![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndassd | Structured version Visualization version GIF version |
Description: A monoid operation is associative. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
Ref | Expression |
---|---|
mndassd.1 | ⊢ 𝐵 = (Base‘𝐺) |
mndassd.2 | ⊢ + = (+g‘𝐺) |
mndassd.3 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
mndassd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mndassd.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
mndassd.6 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
mndassd | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndassd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
2 | mndassd.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | mndassd.5 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | mndassd.6 | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
5 | mndassd.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
6 | mndassd.2 | . . 3 ⊢ + = (+g‘𝐺) | |
7 | 5, 6 | mndass 18775 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
8 | 1, 2, 3, 4, 7 | syl13anc 1372 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6568 (class class class)co 7443 Basecbs 17252 +gcplusg 17305 Mndcmnd 18766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6520 df-fv 6576 df-ov 7446 df-sgrp 18751 df-mnd 18767 |
This theorem is referenced by: mndlrinv 33002 mndlactf1 33004 mndlactfo 33005 mndractf1 33006 mndractfo 33007 mndlactf1o 33008 mndractf1o 33009 |
Copyright terms: Public domain | W3C validator |