| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mndassd | Structured version Visualization version GIF version | ||
| Description: A monoid operation is associative. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| mndassd.1 | ⊢ 𝐵 = (Base‘𝐺) |
| mndassd.2 | ⊢ + = (+g‘𝐺) |
| mndassd.3 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| mndassd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| mndassd.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| mndassd.6 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mndassd | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndassd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 2 | mndassd.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | mndassd.5 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | mndassd.6 | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | mndassd.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | mndassd.2 | . . 3 ⊢ + = (+g‘𝐺) | |
| 7 | 5, 6 | mndass 18706 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 8 | 1, 2, 3, 4, 7 | syl13anc 1373 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 +gcplusg 17256 Mndcmnd 18697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5273 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-iota 6480 df-fv 6535 df-ov 7402 df-sgrp 18682 df-mnd 18698 |
| This theorem is referenced by: mndlrinv 32938 mndlactf1 32940 mndlactfo 32941 mndractf1 32942 mndractfo 32943 mndlactf1o 32944 mndractf1o 32945 gsumwun 32977 |
| Copyright terms: Public domain | W3C validator |