Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndassd Structured version   Visualization version   GIF version

Theorem mndassd 33001
Description: A monoid operation is associative. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndassd.1 𝐵 = (Base‘𝐺)
mndassd.2 + = (+g𝐺)
mndassd.3 (𝜑𝐺 ∈ Mnd)
mndassd.4 (𝜑𝑋𝐵)
mndassd.5 (𝜑𝑌𝐵)
mndassd.6 (𝜑𝑍𝐵)
Assertion
Ref Expression
mndassd (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem mndassd
StepHypRef Expression
1 mndassd.3 . 2 (𝜑𝐺 ∈ Mnd)
2 mndassd.4 . 2 (𝜑𝑋𝐵)
3 mndassd.5 . 2 (𝜑𝑌𝐵)
4 mndassd.6 . 2 (𝜑𝑍𝐵)
5 mndassd.1 . . 3 𝐵 = (Base‘𝐺)
6 mndassd.2 . . 3 + = (+g𝐺)
75, 6mndass 18775 . 2 ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
81, 2, 3, 4, 7syl13anc 1372 1 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6568  (class class class)co 7443  Basecbs 17252  +gcplusg 17305  Mndcmnd 18766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6520  df-fv 6576  df-ov 7446  df-sgrp 18751  df-mnd 18767
This theorem is referenced by:  mndlrinv  33002  mndlactf1  33004  mndlactfo  33005  mndractf1  33006  mndractfo  33007  mndlactf1o  33008  mndractf1o  33009
  Copyright terms: Public domain W3C validator