Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndlactf1 Structured version   Visualization version   GIF version

Theorem mndlactf1 32993
Description: If an element 𝑋 of a monoid 𝐸 is right-invertible, with inverse 𝑌, then its left-translation 𝐹 is injective. See also grplactf1o 18941. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndlactfo.b 𝐵 = (Base‘𝐸)
mndlactfo.z 0 = (0g𝐸)
mndlactfo.p + = (+g𝐸)
mndlactfo.f 𝐹 = (𝑎𝐵 ↦ (𝑋 + 𝑎))
mndlactfo.e (𝜑𝐸 ∈ Mnd)
mndlactfo.x (𝜑𝑋𝐵)
mndlactf1.1 (𝜑𝑌𝐵)
mndlactf1.2 (𝜑 → (𝑌 + 𝑋) = 0 )
Assertion
Ref Expression
mndlactf1 (𝜑𝐹:𝐵1-1𝐵)
Distinct variable groups:   + ,𝑎   0 ,𝑎   𝐵,𝑎   𝐹,𝑎   𝑋,𝑎   𝜑,𝑎
Allowed substitution hints:   𝐸(𝑎)   𝑌(𝑎)

Proof of Theorem mndlactf1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndlactfo.b . . . 4 𝐵 = (Base‘𝐸)
2 mndlactfo.p . . . 4 + = (+g𝐸)
3 mndlactfo.e . . . . 5 (𝜑𝐸 ∈ Mnd)
43adantr 480 . . . 4 ((𝜑𝑎𝐵) → 𝐸 ∈ Mnd)
5 mndlactfo.x . . . . 5 (𝜑𝑋𝐵)
65adantr 480 . . . 4 ((𝜑𝑎𝐵) → 𝑋𝐵)
7 simpr 484 . . . 4 ((𝜑𝑎𝐵) → 𝑎𝐵)
81, 2, 4, 6, 7mndcld 32989 . . 3 ((𝜑𝑎𝐵) → (𝑋 + 𝑎) ∈ 𝐵)
9 mndlactfo.f . . 3 𝐹 = (𝑎𝐵 ↦ (𝑋 + 𝑎))
108, 9fmptd 7052 . 2 (𝜑𝐹:𝐵𝐵)
11 simpr 484 . . . . . . . . . 10 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → (𝐹𝑖) = (𝐹𝑗))
12 oveq2 7361 . . . . . . . . . . 11 (𝑎 = 𝑖 → (𝑋 + 𝑎) = (𝑋 + 𝑖))
13 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → 𝑖𝐵)
14 ovexd 7388 . . . . . . . . . . 11 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → (𝑋 + 𝑖) ∈ V)
159, 12, 13, 14fvmptd3 6957 . . . . . . . . . 10 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → (𝐹𝑖) = (𝑋 + 𝑖))
16 oveq2 7361 . . . . . . . . . . 11 (𝑎 = 𝑗 → (𝑋 + 𝑎) = (𝑋 + 𝑗))
17 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → 𝑗𝐵)
18 ovexd 7388 . . . . . . . . . . 11 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → (𝑋 + 𝑗) ∈ V)
199, 16, 17, 18fvmptd3 6957 . . . . . . . . . 10 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → (𝐹𝑗) = (𝑋 + 𝑗))
2011, 15, 193eqtr3d 2772 . . . . . . . . 9 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → (𝑋 + 𝑖) = (𝑋 + 𝑗))
2120oveq2d 7369 . . . . . . . 8 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → (𝑌 + (𝑋 + 𝑖)) = (𝑌 + (𝑋 + 𝑗)))
223ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → 𝐸 ∈ Mnd)
23 mndlactf1.1 . . . . . . . . . 10 (𝜑𝑌𝐵)
2423ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → 𝑌𝐵)
255ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → 𝑋𝐵)
261, 2, 22, 24, 25, 13mndassd 32990 . . . . . . . 8 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → ((𝑌 + 𝑋) + 𝑖) = (𝑌 + (𝑋 + 𝑖)))
271, 2, 22, 24, 25, 17mndassd 32990 . . . . . . . 8 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → ((𝑌 + 𝑋) + 𝑗) = (𝑌 + (𝑋 + 𝑗)))
2821, 26, 273eqtr4d 2774 . . . . . . 7 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → ((𝑌 + 𝑋) + 𝑖) = ((𝑌 + 𝑋) + 𝑗))
29 mndlactf1.2 . . . . . . . . 9 (𝜑 → (𝑌 + 𝑋) = 0 )
3029ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → (𝑌 + 𝑋) = 0 )
3130oveq1d 7368 . . . . . . 7 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → ((𝑌 + 𝑋) + 𝑖) = ( 0 + 𝑖))
3230oveq1d 7368 . . . . . . 7 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → ((𝑌 + 𝑋) + 𝑗) = ( 0 + 𝑗))
3328, 31, 323eqtr3d 2772 . . . . . 6 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → ( 0 + 𝑖) = ( 0 + 𝑗))
34 mndlactfo.z . . . . . . . 8 0 = (0g𝐸)
351, 2, 34mndlid 18646 . . . . . . 7 ((𝐸 ∈ Mnd ∧ 𝑖𝐵) → ( 0 + 𝑖) = 𝑖)
3622, 13, 35syl2anc 584 . . . . . 6 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → ( 0 + 𝑖) = 𝑖)
371, 2, 34mndlid 18646 . . . . . . 7 ((𝐸 ∈ Mnd ∧ 𝑗𝐵) → ( 0 + 𝑗) = 𝑗)
3822, 17, 37syl2anc 584 . . . . . 6 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → ( 0 + 𝑗) = 𝑗)
3933, 36, 383eqtr3d 2772 . . . . 5 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐹𝑖) = (𝐹𝑗)) → 𝑖 = 𝑗)
4039ex 412 . . . 4 (((𝜑𝑖𝐵) ∧ 𝑗𝐵) → ((𝐹𝑖) = (𝐹𝑗) → 𝑖 = 𝑗))
4140anasss 466 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → ((𝐹𝑖) = (𝐹𝑗) → 𝑖 = 𝑗))
4241ralrimivva 3172 . 2 (𝜑 → ∀𝑖𝐵𝑗𝐵 ((𝐹𝑖) = (𝐹𝑗) → 𝑖 = 𝑗))
43 dff13 7195 . 2 (𝐹:𝐵1-1𝐵 ↔ (𝐹:𝐵𝐵 ∧ ∀𝑖𝐵𝑗𝐵 ((𝐹𝑖) = (𝐹𝑗) → 𝑖 = 𝑗)))
4410, 42, 43sylanbrc 583 1 (𝜑𝐹:𝐵1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cmpt 5176  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Mndcmnd 18626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fv 6494  df-riota 7310  df-ov 7356  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627
This theorem is referenced by:  mndlactf1o  32997
  Copyright terms: Public domain W3C validator