Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndcld Structured version   Visualization version   GIF version

Theorem mndcld 32936
Description: Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndcld.1 𝐵 = (Base‘𝐺)
mndcld.2 + = (+g𝐺)
mndcld.3 (𝜑𝐺 ∈ Mnd)
mndcld.4 (𝜑𝑋𝐵)
mndcld.5 (𝜑𝑌𝐵)
Assertion
Ref Expression
mndcld (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem mndcld
StepHypRef Expression
1 mndcld.3 . 2 (𝜑𝐺 ∈ Mnd)
2 mndcld.4 . 2 (𝜑𝑋𝐵)
3 mndcld.5 . 2 (𝜑𝑌𝐵)
4 mndcld.1 . . 3 𝐵 = (Base‘𝐺)
5 mndcld.2 . . 3 + = (+g𝐺)
64, 5mndcl 18705 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
71, 2, 3, 6syl3anc 1372 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6527  (class class class)co 7399  Basecbs 17213  +gcplusg 17256  Mndcmnd 18697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5273
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-iota 6480  df-fv 6535  df-ov 7402  df-mgm 18603  df-sgrp 18682  df-mnd 18698
This theorem is referenced by:  mndlactf1  32940  mndlactfo  32941  mndractf1  32942  mndractfo  32943  mndlactf1o  32944  mndractf1o  32945
  Copyright terms: Public domain W3C validator