Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndcld Structured version   Visualization version   GIF version

Theorem mndcld 32995
Description: Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndcld.1 𝐵 = (Base‘𝐺)
mndcld.2 + = (+g𝐺)
mndcld.3 (𝜑𝐺 ∈ Mnd)
mndcld.4 (𝜑𝑋𝐵)
mndcld.5 (𝜑𝑌𝐵)
Assertion
Ref Expression
mndcld (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem mndcld
StepHypRef Expression
1 mndcld.3 . 2 (𝜑𝐺 ∈ Mnd)
2 mndcld.4 . 2 (𝜑𝑋𝐵)
3 mndcld.5 . 2 (𝜑𝑌𝐵)
4 mndcld.1 . . 3 𝐵 = (Base‘𝐺)
5 mndcld.2 . . 3 + = (+g𝐺)
64, 5mndcl 18645 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
71, 2, 3, 6syl3anc 1373 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  Mndcmnd 18637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344  df-mgm 18543  df-sgrp 18622  df-mnd 18638
This theorem is referenced by:  mndlactf1  32999  mndlactfo  33000  mndractf1  33001  mndractfo  33002  mndlactf1o  33003  mndractf1o  33004  fxpsubm  33133
  Copyright terms: Public domain W3C validator