Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndcld Structured version   Visualization version   GIF version

Theorem mndcld 32969
Description: Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndcld.1 𝐵 = (Base‘𝐺)
mndcld.2 + = (+g𝐺)
mndcld.3 (𝜑𝐺 ∈ Mnd)
mndcld.4 (𝜑𝑋𝐵)
mndcld.5 (𝜑𝑌𝐵)
Assertion
Ref Expression
mndcld (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem mndcld
StepHypRef Expression
1 mndcld.3 . 2 (𝜑𝐺 ∈ Mnd)
2 mndcld.4 . 2 (𝜑𝑋𝐵)
3 mndcld.5 . 2 (𝜑𝑌𝐵)
4 mndcld.1 . . 3 𝐵 = (Base‘𝐺)
5 mndcld.2 . . 3 + = (+g𝐺)
64, 5mndcl 18675 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
71, 2, 3, 6syl3anc 1373 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6513  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  Mndcmnd 18667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392  df-mgm 18573  df-sgrp 18652  df-mnd 18668
This theorem is referenced by:  mndlactf1  32973  mndlactfo  32974  mndractf1  32975  mndractfo  32976  mndlactf1o  32977  mndractf1o  32978  fxpsubm  33135
  Copyright terms: Public domain W3C validator