Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndcld Structured version   Visualization version   GIF version

Theorem mndcld 33012
Description: Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndcld.1 𝐵 = (Base‘𝐺)
mndcld.2 + = (+g𝐺)
mndcld.3 (𝜑𝐺 ∈ Mnd)
mndcld.4 (𝜑𝑋𝐵)
mndcld.5 (𝜑𝑌𝐵)
Assertion
Ref Expression
mndcld (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem mndcld
StepHypRef Expression
1 mndcld.3 . 2 (𝜑𝐺 ∈ Mnd)
2 mndcld.4 . 2 (𝜑𝑋𝐵)
3 mndcld.5 . 2 (𝜑𝑌𝐵)
4 mndcld.1 . . 3 𝐵 = (Base‘𝐺)
5 mndcld.2 . . 3 + = (+g𝐺)
64, 5mndcl 18751 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
71, 2, 3, 6syl3anc 1373 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6559  (class class class)co 7429  Basecbs 17243  +gcplusg 17293  Mndcmnd 18743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5304
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-iota 6512  df-fv 6567  df-ov 7432  df-mgm 18649  df-sgrp 18728  df-mnd 18744
This theorem is referenced by:  mndlactf1  33016  mndlactfo  33017  mndractf1  33018  mndractfo  33019  mndlactf1o  33020  mndractf1o  33021
  Copyright terms: Public domain W3C validator