Step | Hyp | Ref
| Expression |
1 | | mndractfo.b |
. . . 4
⊢ 𝐵 = (Base‘𝐸) |
2 | | mndractfo.p |
. . . 4
⊢ + =
(+g‘𝐸) |
3 | | mndractfo.e |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ Mnd) |
4 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐸 ∈ Mnd) |
5 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
6 | | mndractfo.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
8 | 1, 2, 4, 5, 7 | mndcld 33008 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 + 𝑋) ∈ 𝐵) |
9 | | mndractfo.f |
. . 3
⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) |
10 | 8, 9 | fmptd 7148 |
. 2
⊢ (𝜑 → 𝐺:𝐵⟶𝐵) |
11 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝐺‘𝑖) = (𝐺‘𝑗)) |
12 | | oveq1 7455 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑖 → (𝑎 + 𝑋) = (𝑖 + 𝑋)) |
13 | | simpllr 775 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → 𝑖 ∈ 𝐵) |
14 | | ovexd 7483 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑖 + 𝑋) ∈ V) |
15 | 9, 12, 13, 14 | fvmptd3 7052 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝐺‘𝑖) = (𝑖 + 𝑋)) |
16 | | oveq1 7455 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑗 → (𝑎 + 𝑋) = (𝑗 + 𝑋)) |
17 | | simplr 768 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → 𝑗 ∈ 𝐵) |
18 | | ovexd 7483 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑗 + 𝑋) ∈ V) |
19 | 9, 16, 17, 18 | fvmptd3 7052 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝐺‘𝑗) = (𝑗 + 𝑋)) |
20 | 11, 15, 19 | 3eqtr3d 2788 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑖 + 𝑋) = (𝑗 + 𝑋)) |
21 | 20 | oveq1d 7463 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → ((𝑖 + 𝑋) + 𝑌) = ((𝑗 + 𝑋) + 𝑌)) |
22 | 3 | ad3antrrr 729 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → 𝐸 ∈ Mnd) |
23 | 6 | ad3antrrr 729 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → 𝑋 ∈ 𝐵) |
24 | | mndractf1.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
25 | 24 | ad3antrrr 729 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → 𝑌 ∈ 𝐵) |
26 | 1, 2, 22, 13, 23, 25 | mndassd 33009 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → ((𝑖 + 𝑋) + 𝑌) = (𝑖 + (𝑋 + 𝑌))) |
27 | 1, 2, 22, 17, 23, 25 | mndassd 33009 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → ((𝑗 + 𝑋) + 𝑌) = (𝑗 + (𝑋 + 𝑌))) |
28 | 21, 26, 27 | 3eqtr3d 2788 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑖 + (𝑋 + 𝑌)) = (𝑗 + (𝑋 + 𝑌))) |
29 | | mndractf1.2 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 + 𝑌) = 0 ) |
30 | 29 | ad3antrrr 729 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑋 + 𝑌) = 0 ) |
31 | 30 | oveq2d 7464 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑖 + (𝑋 + 𝑌)) = (𝑖 + 0 )) |
32 | 30 | oveq2d 7464 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑗 + (𝑋 + 𝑌)) = (𝑗 + 0 )) |
33 | 28, 31, 32 | 3eqtr3d 2788 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑖 + 0 ) = (𝑗 + 0 )) |
34 | | mndractfo.z |
. . . . . . . 8
⊢ 0 =
(0g‘𝐸) |
35 | 1, 2, 34 | mndrid 18793 |
. . . . . . 7
⊢ ((𝐸 ∈ Mnd ∧ 𝑖 ∈ 𝐵) → (𝑖 + 0 ) = 𝑖) |
36 | 22, 13, 35 | syl2anc 583 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑖 + 0 ) = 𝑖) |
37 | 1, 2, 34 | mndrid 18793 |
. . . . . . 7
⊢ ((𝐸 ∈ Mnd ∧ 𝑗 ∈ 𝐵) → (𝑗 + 0 ) = 𝑗) |
38 | 22, 17, 37 | syl2anc 583 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑗 + 0 ) = 𝑗) |
39 | 33, 36, 38 | 3eqtr3d 2788 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → 𝑖 = 𝑗) |
40 | 39 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) → ((𝐺‘𝑖) = (𝐺‘𝑗) → 𝑖 = 𝑗)) |
41 | 40 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → ((𝐺‘𝑖) = (𝐺‘𝑗) → 𝑖 = 𝑗)) |
42 | 41 | ralrimivva 3208 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ 𝐵 ∀𝑗 ∈ 𝐵 ((𝐺‘𝑖) = (𝐺‘𝑗) → 𝑖 = 𝑗)) |
43 | | dff13 7292 |
. 2
⊢ (𝐺:𝐵–1-1→𝐵 ↔ (𝐺:𝐵⟶𝐵 ∧ ∀𝑖 ∈ 𝐵 ∀𝑗 ∈ 𝐵 ((𝐺‘𝑖) = (𝐺‘𝑗) → 𝑖 = 𝑗))) |
44 | 10, 42, 43 | sylanbrc 582 |
1
⊢ (𝜑 → 𝐺:𝐵–1-1→𝐵) |