| Step | Hyp | Ref
| Expression |
| 1 | | mndractfo.b |
. . . 4
⊢ 𝐵 = (Base‘𝐸) |
| 2 | | mndractfo.p |
. . . 4
⊢ + =
(+g‘𝐸) |
| 3 | | mndractfo.e |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ Mnd) |
| 4 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐸 ∈ Mnd) |
| 5 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
| 6 | | mndractfo.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 8 | 1, 2, 4, 5, 7 | mndcld 32973 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 + 𝑋) ∈ 𝐵) |
| 9 | | mndractfo.f |
. . 3
⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) |
| 10 | 8, 9 | fmptd 7115 |
. 2
⊢ (𝜑 → 𝐺:𝐵⟶𝐵) |
| 11 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝐺‘𝑖) = (𝐺‘𝑗)) |
| 12 | | oveq1 7421 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑖 → (𝑎 + 𝑋) = (𝑖 + 𝑋)) |
| 13 | | simpllr 775 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → 𝑖 ∈ 𝐵) |
| 14 | | ovexd 7449 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑖 + 𝑋) ∈ V) |
| 15 | 9, 12, 13, 14 | fvmptd3 7020 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝐺‘𝑖) = (𝑖 + 𝑋)) |
| 16 | | oveq1 7421 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑗 → (𝑎 + 𝑋) = (𝑗 + 𝑋)) |
| 17 | | simplr 768 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → 𝑗 ∈ 𝐵) |
| 18 | | ovexd 7449 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑗 + 𝑋) ∈ V) |
| 19 | 9, 16, 17, 18 | fvmptd3 7020 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝐺‘𝑗) = (𝑗 + 𝑋)) |
| 20 | 11, 15, 19 | 3eqtr3d 2777 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑖 + 𝑋) = (𝑗 + 𝑋)) |
| 21 | 20 | oveq1d 7429 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → ((𝑖 + 𝑋) + 𝑌) = ((𝑗 + 𝑋) + 𝑌)) |
| 22 | 3 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → 𝐸 ∈ Mnd) |
| 23 | 6 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → 𝑋 ∈ 𝐵) |
| 24 | | mndractf1.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 25 | 24 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → 𝑌 ∈ 𝐵) |
| 26 | 1, 2, 22, 13, 23, 25 | mndassd 32974 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → ((𝑖 + 𝑋) + 𝑌) = (𝑖 + (𝑋 + 𝑌))) |
| 27 | 1, 2, 22, 17, 23, 25 | mndassd 32974 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → ((𝑗 + 𝑋) + 𝑌) = (𝑗 + (𝑋 + 𝑌))) |
| 28 | 21, 26, 27 | 3eqtr3d 2777 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑖 + (𝑋 + 𝑌)) = (𝑗 + (𝑋 + 𝑌))) |
| 29 | | mndractf1.2 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 + 𝑌) = 0 ) |
| 30 | 29 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑋 + 𝑌) = 0 ) |
| 31 | 30 | oveq2d 7430 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑖 + (𝑋 + 𝑌)) = (𝑖 + 0 )) |
| 32 | 30 | oveq2d 7430 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑗 + (𝑋 + 𝑌)) = (𝑗 + 0 )) |
| 33 | 28, 31, 32 | 3eqtr3d 2777 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑖 + 0 ) = (𝑗 + 0 )) |
| 34 | | mndractfo.z |
. . . . . . . 8
⊢ 0 =
(0g‘𝐸) |
| 35 | 1, 2, 34 | mndrid 18742 |
. . . . . . 7
⊢ ((𝐸 ∈ Mnd ∧ 𝑖 ∈ 𝐵) → (𝑖 + 0 ) = 𝑖) |
| 36 | 22, 13, 35 | syl2anc 584 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑖 + 0 ) = 𝑖) |
| 37 | 1, 2, 34 | mndrid 18742 |
. . . . . . 7
⊢ ((𝐸 ∈ Mnd ∧ 𝑗 ∈ 𝐵) → (𝑗 + 0 ) = 𝑗) |
| 38 | 22, 17, 37 | syl2anc 584 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → (𝑗 + 0 ) = 𝑗) |
| 39 | 33, 36, 38 | 3eqtr3d 2777 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) ∧ (𝐺‘𝑖) = (𝐺‘𝑗)) → 𝑖 = 𝑗) |
| 40 | 39 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐵) ∧ 𝑗 ∈ 𝐵) → ((𝐺‘𝑖) = (𝐺‘𝑗) → 𝑖 = 𝑗)) |
| 41 | 40 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵)) → ((𝐺‘𝑖) = (𝐺‘𝑗) → 𝑖 = 𝑗)) |
| 42 | 41 | ralrimivva 3189 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ 𝐵 ∀𝑗 ∈ 𝐵 ((𝐺‘𝑖) = (𝐺‘𝑗) → 𝑖 = 𝑗)) |
| 43 | | dff13 7258 |
. 2
⊢ (𝐺:𝐵–1-1→𝐵 ↔ (𝐺:𝐵⟶𝐵 ∧ ∀𝑖 ∈ 𝐵 ∀𝑗 ∈ 𝐵 ((𝐺‘𝑖) = (𝐺‘𝑗) → 𝑖 = 𝑗))) |
| 44 | 10, 42, 43 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐺:𝐵–1-1→𝐵) |