Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndractf1 Structured version   Visualization version   GIF version

Theorem mndractf1 32969
Description: If an element 𝑋 of a monoid 𝐸 is right-invertible, with inverse 𝑌, then its left-translation 𝐺 is injective. See also grplactf1o 18976. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndractfo.b 𝐵 = (Base‘𝐸)
mndractfo.z 0 = (0g𝐸)
mndractfo.p + = (+g𝐸)
mndractfo.f 𝐺 = (𝑎𝐵 ↦ (𝑎 + 𝑋))
mndractfo.e (𝜑𝐸 ∈ Mnd)
mndractfo.x (𝜑𝑋𝐵)
mndractf1.1 (𝜑𝑌𝐵)
mndractf1.2 (𝜑 → (𝑋 + 𝑌) = 0 )
Assertion
Ref Expression
mndractf1 (𝜑𝐺:𝐵1-1𝐵)
Distinct variable groups:   + ,𝑎   0 ,𝑎   𝐵,𝑎   𝐺,𝑎   𝑋,𝑎   𝜑,𝑎
Allowed substitution hints:   𝐸(𝑎)   𝑌(𝑎)

Proof of Theorem mndractf1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndractfo.b . . . 4 𝐵 = (Base‘𝐸)
2 mndractfo.p . . . 4 + = (+g𝐸)
3 mndractfo.e . . . . 5 (𝜑𝐸 ∈ Mnd)
43adantr 480 . . . 4 ((𝜑𝑎𝐵) → 𝐸 ∈ Mnd)
5 simpr 484 . . . 4 ((𝜑𝑎𝐵) → 𝑎𝐵)
6 mndractfo.x . . . . 5 (𝜑𝑋𝐵)
76adantr 480 . . . 4 ((𝜑𝑎𝐵) → 𝑋𝐵)
81, 2, 4, 5, 7mndcld 32963 . . 3 ((𝜑𝑎𝐵) → (𝑎 + 𝑋) ∈ 𝐵)
9 mndractfo.f . . 3 𝐺 = (𝑎𝐵 ↦ (𝑎 + 𝑋))
108, 9fmptd 7086 . 2 (𝜑𝐺:𝐵𝐵)
11 simpr 484 . . . . . . . . . 10 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → (𝐺𝑖) = (𝐺𝑗))
12 oveq1 7394 . . . . . . . . . . 11 (𝑎 = 𝑖 → (𝑎 + 𝑋) = (𝑖 + 𝑋))
13 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → 𝑖𝐵)
14 ovexd 7422 . . . . . . . . . . 11 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → (𝑖 + 𝑋) ∈ V)
159, 12, 13, 14fvmptd3 6991 . . . . . . . . . 10 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → (𝐺𝑖) = (𝑖 + 𝑋))
16 oveq1 7394 . . . . . . . . . . 11 (𝑎 = 𝑗 → (𝑎 + 𝑋) = (𝑗 + 𝑋))
17 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → 𝑗𝐵)
18 ovexd 7422 . . . . . . . . . . 11 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → (𝑗 + 𝑋) ∈ V)
199, 16, 17, 18fvmptd3 6991 . . . . . . . . . 10 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → (𝐺𝑗) = (𝑗 + 𝑋))
2011, 15, 193eqtr3d 2772 . . . . . . . . 9 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → (𝑖 + 𝑋) = (𝑗 + 𝑋))
2120oveq1d 7402 . . . . . . . 8 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → ((𝑖 + 𝑋) + 𝑌) = ((𝑗 + 𝑋) + 𝑌))
223ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → 𝐸 ∈ Mnd)
236ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → 𝑋𝐵)
24 mndractf1.1 . . . . . . . . . 10 (𝜑𝑌𝐵)
2524ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → 𝑌𝐵)
261, 2, 22, 13, 23, 25mndassd 32964 . . . . . . . 8 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → ((𝑖 + 𝑋) + 𝑌) = (𝑖 + (𝑋 + 𝑌)))
271, 2, 22, 17, 23, 25mndassd 32964 . . . . . . . 8 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → ((𝑗 + 𝑋) + 𝑌) = (𝑗 + (𝑋 + 𝑌)))
2821, 26, 273eqtr3d 2772 . . . . . . 7 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → (𝑖 + (𝑋 + 𝑌)) = (𝑗 + (𝑋 + 𝑌)))
29 mndractf1.2 . . . . . . . . 9 (𝜑 → (𝑋 + 𝑌) = 0 )
3029ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → (𝑋 + 𝑌) = 0 )
3130oveq2d 7403 . . . . . . 7 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → (𝑖 + (𝑋 + 𝑌)) = (𝑖 + 0 ))
3230oveq2d 7403 . . . . . . 7 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → (𝑗 + (𝑋 + 𝑌)) = (𝑗 + 0 ))
3328, 31, 323eqtr3d 2772 . . . . . 6 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → (𝑖 + 0 ) = (𝑗 + 0 ))
34 mndractfo.z . . . . . . . 8 0 = (0g𝐸)
351, 2, 34mndrid 18682 . . . . . . 7 ((𝐸 ∈ Mnd ∧ 𝑖𝐵) → (𝑖 + 0 ) = 𝑖)
3622, 13, 35syl2anc 584 . . . . . 6 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → (𝑖 + 0 ) = 𝑖)
371, 2, 34mndrid 18682 . . . . . . 7 ((𝐸 ∈ Mnd ∧ 𝑗𝐵) → (𝑗 + 0 ) = 𝑗)
3822, 17, 37syl2anc 584 . . . . . 6 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → (𝑗 + 0 ) = 𝑗)
3933, 36, 383eqtr3d 2772 . . . . 5 ((((𝜑𝑖𝐵) ∧ 𝑗𝐵) ∧ (𝐺𝑖) = (𝐺𝑗)) → 𝑖 = 𝑗)
4039ex 412 . . . 4 (((𝜑𝑖𝐵) ∧ 𝑗𝐵) → ((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
4140anasss 466 . . 3 ((𝜑 ∧ (𝑖𝐵𝑗𝐵)) → ((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
4241ralrimivva 3180 . 2 (𝜑 → ∀𝑖𝐵𝑗𝐵 ((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
43 dff13 7229 . 2 (𝐺:𝐵1-1𝐵 ↔ (𝐺:𝐵𝐵 ∧ ∀𝑖𝐵𝑗𝐵 ((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))
4410, 42, 43sylanbrc 583 1 (𝜑𝐺:𝐵1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cmpt 5188  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Mndcmnd 18661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fv 6519  df-riota 7344  df-ov 7390  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662
This theorem is referenced by:  mndractf1o  32972
  Copyright terms: Public domain W3C validator