| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐹:𝐵–onto→𝐵) → 𝐹:𝐵–onto→𝐵) |
| 2 | | mndlactfo.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ Mnd) |
| 3 | | mndlactfo.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐸) |
| 4 | | mndlactfo.z |
. . . . . . 7
⊢ 0 =
(0g‘𝐸) |
| 5 | 3, 4 | mndidcl 18763 |
. . . . . 6
⊢ (𝐸 ∈ Mnd → 0 ∈ 𝐵) |
| 6 | 2, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → 0 ∈ 𝐵) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐹:𝐵–onto→𝐵) → 0 ∈ 𝐵) |
| 8 | | foelcdmi 6969 |
. . . 4
⊢ ((𝐹:𝐵–onto→𝐵 ∧ 0 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 0 ) |
| 9 | 1, 7, 8 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝐹:𝐵–onto→𝐵) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 0 ) |
| 10 | | mndlactfo.f |
. . . . . . 7
⊢ 𝐹 = (𝑎 ∈ 𝐵 ↦ (𝑋 + 𝑎)) |
| 11 | | oveq2 7440 |
. . . . . . 7
⊢ (𝑎 = 𝑦 → (𝑋 + 𝑎) = (𝑋 + 𝑦)) |
| 12 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 13 | | ovexd 7467 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑋 + 𝑦) ∈ V) |
| 14 | 10, 11, 12, 13 | fvmptd3 7038 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) = (𝑋 + 𝑦)) |
| 15 | 14 | eqeq1d 2738 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑦) = 0 ↔ (𝑋 + 𝑦) = 0 )) |
| 16 | 15 | biimpd 229 |
. . . 4
⊢ (((𝜑 ∧ 𝐹:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑦) = 0 → (𝑋 + 𝑦) = 0 )) |
| 17 | 16 | reximdva 3167 |
. . 3
⊢ ((𝜑 ∧ 𝐹:𝐵–onto→𝐵) → (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 0 → ∃𝑦 ∈ 𝐵 (𝑋 + 𝑦) = 0 )) |
| 18 | 9, 17 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝐹:𝐵–onto→𝐵) → ∃𝑦 ∈ 𝐵 (𝑋 + 𝑦) = 0 ) |
| 19 | | mndlactfo.p |
. . . . . . 7
⊢ + =
(+g‘𝐸) |
| 20 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐸 ∈ Mnd) |
| 21 | | mndlactfo.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 22 | 21 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 23 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
| 24 | 3, 19, 20, 22, 23 | mndcld 33028 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑋 + 𝑎) ∈ 𝐵) |
| 25 | 24, 10 | fmptd 7133 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐵⟶𝐵) |
| 26 | 25 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) → 𝐹:𝐵⟶𝐵) |
| 27 | | fveq2 6905 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 𝑧) → (𝐹‘𝑥) = (𝐹‘(𝑦 + 𝑧))) |
| 28 | 27 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 𝑧) → (𝑧 = (𝐹‘𝑥) ↔ 𝑧 = (𝐹‘(𝑦 + 𝑧)))) |
| 29 | 2 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝐸 ∈ Mnd) |
| 30 | | simpllr 775 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 31 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
| 32 | 3, 19, 29, 30, 31 | mndcld 33028 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝑦 + 𝑧) ∈ 𝐵) |
| 33 | 21 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 34 | 3, 19, 29, 33, 30, 31 | mndassd 33029 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → ((𝑋 + 𝑦) + 𝑧) = (𝑋 + (𝑦 + 𝑧))) |
| 35 | | simplr 768 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝑋 + 𝑦) = 0 ) |
| 36 | 35 | oveq1d 7447 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → ((𝑋 + 𝑦) + 𝑧) = ( 0 + 𝑧)) |
| 37 | 3, 19, 4 | mndlid 18768 |
. . . . . . . . 9
⊢ ((𝐸 ∈ Mnd ∧ 𝑧 ∈ 𝐵) → ( 0 + 𝑧) = 𝑧) |
| 38 | 29, 31, 37 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → ( 0 + 𝑧) = 𝑧) |
| 39 | 36, 38 | eqtr2d 2777 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑧 = ((𝑋 + 𝑦) + 𝑧)) |
| 40 | | oveq2 7440 |
. . . . . . . 8
⊢ (𝑎 = (𝑦 + 𝑧) → (𝑋 + 𝑎) = (𝑋 + (𝑦 + 𝑧))) |
| 41 | | ovexd 7467 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝑋 + (𝑦 + 𝑧)) ∈ V) |
| 42 | 10, 40, 32, 41 | fvmptd3 7038 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝐹‘(𝑦 + 𝑧)) = (𝑋 + (𝑦 + 𝑧))) |
| 43 | 34, 39, 42 | 3eqtr4d 2786 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑧 = (𝐹‘(𝑦 + 𝑧))) |
| 44 | 28, 32, 43 | rspcedvdw 3624 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧 ∈ 𝐵) → ∃𝑥 ∈ 𝐵 𝑧 = (𝐹‘𝑥)) |
| 45 | 44 | ralrimiva 3145 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) → ∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 𝑧 = (𝐹‘𝑥)) |
| 46 | | dffo3 7121 |
. . . 4
⊢ (𝐹:𝐵–onto→𝐵 ↔ (𝐹:𝐵⟶𝐵 ∧ ∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 𝑧 = (𝐹‘𝑥))) |
| 47 | 26, 45, 46 | sylanbrc 583 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑋 + 𝑦) = 0 ) → 𝐹:𝐵–onto→𝐵) |
| 48 | 47 | r19.29an 3157 |
. 2
⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 (𝑋 + 𝑦) = 0 ) → 𝐹:𝐵–onto→𝐵) |
| 49 | 18, 48 | impbida 800 |
1
⊢ (𝜑 → (𝐹:𝐵–onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 (𝑋 + 𝑦) = 0 )) |