Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndlactfo Structured version   Visualization version   GIF version

Theorem mndlactfo 32994
Description: An element 𝑋 of a monoid 𝐸 is left-invertible iff its left-translation 𝐹 is surjective. See also grplactf1o 18941. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndlactfo.b 𝐵 = (Base‘𝐸)
mndlactfo.z 0 = (0g𝐸)
mndlactfo.p + = (+g𝐸)
mndlactfo.f 𝐹 = (𝑎𝐵 ↦ (𝑋 + 𝑎))
mndlactfo.e (𝜑𝐸 ∈ Mnd)
mndlactfo.x (𝜑𝑋𝐵)
Assertion
Ref Expression
mndlactfo (𝜑 → (𝐹:𝐵onto𝐵 ↔ ∃𝑦𝐵 (𝑋 + 𝑦) = 0 ))
Distinct variable groups:   + ,𝑎,𝑦   0 ,𝑎,𝑦   𝐵,𝑎,𝑦   𝐹,𝑎,𝑦   𝑋,𝑎,𝑦   𝜑,𝑎,𝑦
Allowed substitution hints:   𝐸(𝑦,𝑎)

Proof of Theorem mndlactfo
Dummy variables 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝐹:𝐵onto𝐵) → 𝐹:𝐵onto𝐵)
2 mndlactfo.e . . . . . 6 (𝜑𝐸 ∈ Mnd)
3 mndlactfo.b . . . . . . 7 𝐵 = (Base‘𝐸)
4 mndlactfo.z . . . . . . 7 0 = (0g𝐸)
53, 4mndidcl 18641 . . . . . 6 (𝐸 ∈ Mnd → 0𝐵)
62, 5syl 17 . . . . 5 (𝜑0𝐵)
76adantr 480 . . . 4 ((𝜑𝐹:𝐵onto𝐵) → 0𝐵)
8 foelcdmi 6888 . . . 4 ((𝐹:𝐵onto𝐵0𝐵) → ∃𝑦𝐵 (𝐹𝑦) = 0 )
91, 7, 8syl2anc 584 . . 3 ((𝜑𝐹:𝐵onto𝐵) → ∃𝑦𝐵 (𝐹𝑦) = 0 )
10 mndlactfo.f . . . . . . 7 𝐹 = (𝑎𝐵 ↦ (𝑋 + 𝑎))
11 oveq2 7361 . . . . . . 7 (𝑎 = 𝑦 → (𝑋 + 𝑎) = (𝑋 + 𝑦))
12 simpr 484 . . . . . . 7 (((𝜑𝐹:𝐵onto𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
13 ovexd 7388 . . . . . . 7 (((𝜑𝐹:𝐵onto𝐵) ∧ 𝑦𝐵) → (𝑋 + 𝑦) ∈ V)
1410, 11, 12, 13fvmptd3 6957 . . . . . 6 (((𝜑𝐹:𝐵onto𝐵) ∧ 𝑦𝐵) → (𝐹𝑦) = (𝑋 + 𝑦))
1514eqeq1d 2731 . . . . 5 (((𝜑𝐹:𝐵onto𝐵) ∧ 𝑦𝐵) → ((𝐹𝑦) = 0 ↔ (𝑋 + 𝑦) = 0 ))
1615biimpd 229 . . . 4 (((𝜑𝐹:𝐵onto𝐵) ∧ 𝑦𝐵) → ((𝐹𝑦) = 0 → (𝑋 + 𝑦) = 0 ))
1716reximdva 3142 . . 3 ((𝜑𝐹:𝐵onto𝐵) → (∃𝑦𝐵 (𝐹𝑦) = 0 → ∃𝑦𝐵 (𝑋 + 𝑦) = 0 ))
189, 17mpd 15 . 2 ((𝜑𝐹:𝐵onto𝐵) → ∃𝑦𝐵 (𝑋 + 𝑦) = 0 )
19 mndlactfo.p . . . . . . 7 + = (+g𝐸)
202adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝐸 ∈ Mnd)
21 mndlactfo.x . . . . . . . 8 (𝜑𝑋𝐵)
2221adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑋𝐵)
23 simpr 484 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑎𝐵)
243, 19, 20, 22, 23mndcld 32989 . . . . . 6 ((𝜑𝑎𝐵) → (𝑋 + 𝑎) ∈ 𝐵)
2524, 10fmptd 7052 . . . . 5 (𝜑𝐹:𝐵𝐵)
2625ad2antrr 726 . . . 4 (((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) → 𝐹:𝐵𝐵)
27 fveq2 6826 . . . . . . 7 (𝑥 = (𝑦 + 𝑧) → (𝐹𝑥) = (𝐹‘(𝑦 + 𝑧)))
2827eqeq2d 2740 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝑧 = (𝐹𝑥) ↔ 𝑧 = (𝐹‘(𝑦 + 𝑧))))
292ad3antrrr 730 . . . . . . 7 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → 𝐸 ∈ Mnd)
30 simpllr 775 . . . . . . 7 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → 𝑦𝐵)
31 simpr 484 . . . . . . 7 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → 𝑧𝐵)
323, 19, 29, 30, 31mndcld 32989 . . . . . 6 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → (𝑦 + 𝑧) ∈ 𝐵)
3321ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → 𝑋𝐵)
343, 19, 29, 33, 30, 31mndassd 32990 . . . . . . 7 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → ((𝑋 + 𝑦) + 𝑧) = (𝑋 + (𝑦 + 𝑧)))
35 simplr 768 . . . . . . . . 9 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → (𝑋 + 𝑦) = 0 )
3635oveq1d 7368 . . . . . . . 8 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → ((𝑋 + 𝑦) + 𝑧) = ( 0 + 𝑧))
373, 19, 4mndlid 18646 . . . . . . . . 9 ((𝐸 ∈ Mnd ∧ 𝑧𝐵) → ( 0 + 𝑧) = 𝑧)
3829, 31, 37syl2anc 584 . . . . . . . 8 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → ( 0 + 𝑧) = 𝑧)
3936, 38eqtr2d 2765 . . . . . . 7 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → 𝑧 = ((𝑋 + 𝑦) + 𝑧))
40 oveq2 7361 . . . . . . . 8 (𝑎 = (𝑦 + 𝑧) → (𝑋 + 𝑎) = (𝑋 + (𝑦 + 𝑧)))
41 ovexd 7388 . . . . . . . 8 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → (𝑋 + (𝑦 + 𝑧)) ∈ V)
4210, 40, 32, 41fvmptd3 6957 . . . . . . 7 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → (𝐹‘(𝑦 + 𝑧)) = (𝑋 + (𝑦 + 𝑧)))
4334, 39, 423eqtr4d 2774 . . . . . 6 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → 𝑧 = (𝐹‘(𝑦 + 𝑧)))
4428, 32, 43rspcedvdw 3582 . . . . 5 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → ∃𝑥𝐵 𝑧 = (𝐹𝑥))
4544ralrimiva 3121 . . . 4 (((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) → ∀𝑧𝐵𝑥𝐵 𝑧 = (𝐹𝑥))
46 dffo3 7040 . . . 4 (𝐹:𝐵onto𝐵 ↔ (𝐹:𝐵𝐵 ∧ ∀𝑧𝐵𝑥𝐵 𝑧 = (𝐹𝑥)))
4726, 45, 46sylanbrc 583 . . 3 (((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) → 𝐹:𝐵onto𝐵)
4847r19.29an 3133 . 2 ((𝜑 ∧ ∃𝑦𝐵 (𝑋 + 𝑦) = 0 ) → 𝐹:𝐵onto𝐵)
4918, 48impbida 800 1 (𝜑 → (𝐹:𝐵onto𝐵 ↔ ∃𝑦𝐵 (𝑋 + 𝑦) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  cmpt 5176  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Mndcmnd 18626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-riota 7310  df-ov 7356  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627
This theorem is referenced by:  mndlactf1o  32997
  Copyright terms: Public domain W3C validator