Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndlactfo Structured version   Visualization version   GIF version

Theorem mndlactfo 32968
Description: An element 𝑋 of a monoid 𝐸 is left-invertible iff its left-translation 𝐹 is surjective. See also grplactf1o 18976. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndlactfo.b 𝐵 = (Base‘𝐸)
mndlactfo.z 0 = (0g𝐸)
mndlactfo.p + = (+g𝐸)
mndlactfo.f 𝐹 = (𝑎𝐵 ↦ (𝑋 + 𝑎))
mndlactfo.e (𝜑𝐸 ∈ Mnd)
mndlactfo.x (𝜑𝑋𝐵)
Assertion
Ref Expression
mndlactfo (𝜑 → (𝐹:𝐵onto𝐵 ↔ ∃𝑦𝐵 (𝑋 + 𝑦) = 0 ))
Distinct variable groups:   + ,𝑎,𝑦   0 ,𝑎,𝑦   𝐵,𝑎,𝑦   𝐹,𝑎,𝑦   𝑋,𝑎,𝑦   𝜑,𝑎,𝑦
Allowed substitution hints:   𝐸(𝑦,𝑎)

Proof of Theorem mndlactfo
Dummy variables 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝐹:𝐵onto𝐵) → 𝐹:𝐵onto𝐵)
2 mndlactfo.e . . . . . 6 (𝜑𝐸 ∈ Mnd)
3 mndlactfo.b . . . . . . 7 𝐵 = (Base‘𝐸)
4 mndlactfo.z . . . . . . 7 0 = (0g𝐸)
53, 4mndidcl 18676 . . . . . 6 (𝐸 ∈ Mnd → 0𝐵)
62, 5syl 17 . . . . 5 (𝜑0𝐵)
76adantr 480 . . . 4 ((𝜑𝐹:𝐵onto𝐵) → 0𝐵)
8 foelcdmi 6922 . . . 4 ((𝐹:𝐵onto𝐵0𝐵) → ∃𝑦𝐵 (𝐹𝑦) = 0 )
91, 7, 8syl2anc 584 . . 3 ((𝜑𝐹:𝐵onto𝐵) → ∃𝑦𝐵 (𝐹𝑦) = 0 )
10 mndlactfo.f . . . . . . 7 𝐹 = (𝑎𝐵 ↦ (𝑋 + 𝑎))
11 oveq2 7395 . . . . . . 7 (𝑎 = 𝑦 → (𝑋 + 𝑎) = (𝑋 + 𝑦))
12 simpr 484 . . . . . . 7 (((𝜑𝐹:𝐵onto𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
13 ovexd 7422 . . . . . . 7 (((𝜑𝐹:𝐵onto𝐵) ∧ 𝑦𝐵) → (𝑋 + 𝑦) ∈ V)
1410, 11, 12, 13fvmptd3 6991 . . . . . 6 (((𝜑𝐹:𝐵onto𝐵) ∧ 𝑦𝐵) → (𝐹𝑦) = (𝑋 + 𝑦))
1514eqeq1d 2731 . . . . 5 (((𝜑𝐹:𝐵onto𝐵) ∧ 𝑦𝐵) → ((𝐹𝑦) = 0 ↔ (𝑋 + 𝑦) = 0 ))
1615biimpd 229 . . . 4 (((𝜑𝐹:𝐵onto𝐵) ∧ 𝑦𝐵) → ((𝐹𝑦) = 0 → (𝑋 + 𝑦) = 0 ))
1716reximdva 3146 . . 3 ((𝜑𝐹:𝐵onto𝐵) → (∃𝑦𝐵 (𝐹𝑦) = 0 → ∃𝑦𝐵 (𝑋 + 𝑦) = 0 ))
189, 17mpd 15 . 2 ((𝜑𝐹:𝐵onto𝐵) → ∃𝑦𝐵 (𝑋 + 𝑦) = 0 )
19 mndlactfo.p . . . . . . 7 + = (+g𝐸)
202adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝐸 ∈ Mnd)
21 mndlactfo.x . . . . . . . 8 (𝜑𝑋𝐵)
2221adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑋𝐵)
23 simpr 484 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑎𝐵)
243, 19, 20, 22, 23mndcld 32963 . . . . . 6 ((𝜑𝑎𝐵) → (𝑋 + 𝑎) ∈ 𝐵)
2524, 10fmptd 7086 . . . . 5 (𝜑𝐹:𝐵𝐵)
2625ad2antrr 726 . . . 4 (((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) → 𝐹:𝐵𝐵)
27 fveq2 6858 . . . . . . 7 (𝑥 = (𝑦 + 𝑧) → (𝐹𝑥) = (𝐹‘(𝑦 + 𝑧)))
2827eqeq2d 2740 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝑧 = (𝐹𝑥) ↔ 𝑧 = (𝐹‘(𝑦 + 𝑧))))
292ad3antrrr 730 . . . . . . 7 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → 𝐸 ∈ Mnd)
30 simpllr 775 . . . . . . 7 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → 𝑦𝐵)
31 simpr 484 . . . . . . 7 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → 𝑧𝐵)
323, 19, 29, 30, 31mndcld 32963 . . . . . 6 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → (𝑦 + 𝑧) ∈ 𝐵)
3321ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → 𝑋𝐵)
343, 19, 29, 33, 30, 31mndassd 32964 . . . . . . 7 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → ((𝑋 + 𝑦) + 𝑧) = (𝑋 + (𝑦 + 𝑧)))
35 simplr 768 . . . . . . . . 9 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → (𝑋 + 𝑦) = 0 )
3635oveq1d 7402 . . . . . . . 8 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → ((𝑋 + 𝑦) + 𝑧) = ( 0 + 𝑧))
373, 19, 4mndlid 18681 . . . . . . . . 9 ((𝐸 ∈ Mnd ∧ 𝑧𝐵) → ( 0 + 𝑧) = 𝑧)
3829, 31, 37syl2anc 584 . . . . . . . 8 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → ( 0 + 𝑧) = 𝑧)
3936, 38eqtr2d 2765 . . . . . . 7 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → 𝑧 = ((𝑋 + 𝑦) + 𝑧))
40 oveq2 7395 . . . . . . . 8 (𝑎 = (𝑦 + 𝑧) → (𝑋 + 𝑎) = (𝑋 + (𝑦 + 𝑧)))
41 ovexd 7422 . . . . . . . 8 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → (𝑋 + (𝑦 + 𝑧)) ∈ V)
4210, 40, 32, 41fvmptd3 6991 . . . . . . 7 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → (𝐹‘(𝑦 + 𝑧)) = (𝑋 + (𝑦 + 𝑧)))
4334, 39, 423eqtr4d 2774 . . . . . 6 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → 𝑧 = (𝐹‘(𝑦 + 𝑧)))
4428, 32, 43rspcedvdw 3591 . . . . 5 ((((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) ∧ 𝑧𝐵) → ∃𝑥𝐵 𝑧 = (𝐹𝑥))
4544ralrimiva 3125 . . . 4 (((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) → ∀𝑧𝐵𝑥𝐵 𝑧 = (𝐹𝑥))
46 dffo3 7074 . . . 4 (𝐹:𝐵onto𝐵 ↔ (𝐹:𝐵𝐵 ∧ ∀𝑧𝐵𝑥𝐵 𝑧 = (𝐹𝑥)))
4726, 45, 46sylanbrc 583 . . 3 (((𝜑𝑦𝐵) ∧ (𝑋 + 𝑦) = 0 ) → 𝐹:𝐵onto𝐵)
4847r19.29an 3137 . 2 ((𝜑 ∧ ∃𝑦𝐵 (𝑋 + 𝑦) = 0 ) → 𝐹:𝐵onto𝐵)
4918, 48impbida 800 1 (𝜑 → (𝐹:𝐵onto𝐵 ↔ ∃𝑦𝐵 (𝑋 + 𝑦) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cmpt 5188  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Mndcmnd 18661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-riota 7344  df-ov 7390  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662
This theorem is referenced by:  mndlactf1o  32971
  Copyright terms: Public domain W3C validator