| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐺:𝐵–onto→𝐵) → 𝐺:𝐵–onto→𝐵) |
| 2 | | mndractfo.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ Mnd) |
| 3 | | mndractfo.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐸) |
| 4 | | mndractfo.z |
. . . . . . 7
⊢ 0 =
(0g‘𝐸) |
| 5 | 3, 4 | mndidcl 18732 |
. . . . . 6
⊢ (𝐸 ∈ Mnd → 0 ∈ 𝐵) |
| 6 | 2, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → 0 ∈ 𝐵) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐺:𝐵–onto→𝐵) → 0 ∈ 𝐵) |
| 8 | | foelcdmi 6950 |
. . . 4
⊢ ((𝐺:𝐵–onto→𝐵 ∧ 0 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝐺‘𝑦) = 0 ) |
| 9 | 1, 7, 8 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝐺:𝐵–onto→𝐵) → ∃𝑦 ∈ 𝐵 (𝐺‘𝑦) = 0 ) |
| 10 | | mndractfo.f |
. . . . . . 7
⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) |
| 11 | | oveq1 7420 |
. . . . . . 7
⊢ (𝑎 = 𝑦 → (𝑎 + 𝑋) = (𝑦 + 𝑋)) |
| 12 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐺:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 13 | | ovexd 7448 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐺:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 + 𝑋) ∈ V) |
| 14 | 10, 11, 12, 13 | fvmptd3 7019 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐺:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → (𝐺‘𝑦) = (𝑦 + 𝑋)) |
| 15 | 14 | eqeq1d 2736 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝐺‘𝑦) = 0 ↔ (𝑦 + 𝑋) = 0 )) |
| 16 | 15 | biimpd 229 |
. . . 4
⊢ (((𝜑 ∧ 𝐺:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝐺‘𝑦) = 0 → (𝑦 + 𝑋) = 0 )) |
| 17 | 16 | reximdva 3155 |
. . 3
⊢ ((𝜑 ∧ 𝐺:𝐵–onto→𝐵) → (∃𝑦 ∈ 𝐵 (𝐺‘𝑦) = 0 → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| 18 | 9, 17 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝐺:𝐵–onto→𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| 19 | | mndractfo.p |
. . . . . . 7
⊢ + =
(+g‘𝐸) |
| 20 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐸 ∈ Mnd) |
| 21 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
| 22 | | mndractfo.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 23 | 22 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 24 | 3, 19, 20, 21, 23 | mndcld 32971 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 + 𝑋) ∈ 𝐵) |
| 25 | 24, 10 | fmptd 7114 |
. . . . 5
⊢ (𝜑 → 𝐺:𝐵⟶𝐵) |
| 26 | 25 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) → 𝐺:𝐵⟶𝐵) |
| 27 | | fveq2 6886 |
. . . . . . 7
⊢ (𝑥 = (𝑧 + 𝑦) → (𝐺‘𝑥) = (𝐺‘(𝑧 + 𝑦))) |
| 28 | 27 | eqeq2d 2745 |
. . . . . 6
⊢ (𝑥 = (𝑧 + 𝑦) → (𝑧 = (𝐺‘𝑥) ↔ 𝑧 = (𝐺‘(𝑧 + 𝑦)))) |
| 29 | 2 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝐸 ∈ Mnd) |
| 30 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
| 31 | | simpllr 775 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 32 | 3, 19, 29, 30, 31 | mndcld 32971 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝑧 + 𝑦) ∈ 𝐵) |
| 33 | 22 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 34 | 3, 19, 29, 30, 31, 33 | mndassd 32972 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → ((𝑧 + 𝑦) + 𝑋) = (𝑧 + (𝑦 + 𝑋))) |
| 35 | | oveq1 7420 |
. . . . . . . 8
⊢ (𝑎 = (𝑧 + 𝑦) → (𝑎 + 𝑋) = ((𝑧 + 𝑦) + 𝑋)) |
| 36 | | ovexd 7448 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → ((𝑧 + 𝑦) + 𝑋) ∈ V) |
| 37 | 10, 35, 32, 36 | fvmptd3 7019 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝐺‘(𝑧 + 𝑦)) = ((𝑧 + 𝑦) + 𝑋)) |
| 38 | | simplr 768 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝑦 + 𝑋) = 0 ) |
| 39 | 38 | oveq2d 7429 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝑧 + (𝑦 + 𝑋)) = (𝑧 + 0 )) |
| 40 | 3, 19, 4 | mndrid 18738 |
. . . . . . . . 9
⊢ ((𝐸 ∈ Mnd ∧ 𝑧 ∈ 𝐵) → (𝑧 + 0 ) = 𝑧) |
| 41 | 29, 30, 40 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝑧 + 0 ) = 𝑧) |
| 42 | 39, 41 | eqtr2d 2770 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑧 = (𝑧 + (𝑦 + 𝑋))) |
| 43 | 34, 37, 42 | 3eqtr4rd 2780 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑧 = (𝐺‘(𝑧 + 𝑦))) |
| 44 | 28, 32, 43 | rspcedvdw 3608 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → ∃𝑥 ∈ 𝐵 𝑧 = (𝐺‘𝑥)) |
| 45 | 44 | ralrimiva 3133 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) → ∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 𝑧 = (𝐺‘𝑥)) |
| 46 | | dffo3 7102 |
. . . 4
⊢ (𝐺:𝐵–onto→𝐵 ↔ (𝐺:𝐵⟶𝐵 ∧ ∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 𝑧 = (𝐺‘𝑥))) |
| 47 | 26, 45, 46 | sylanbrc 583 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) → 𝐺:𝐵–onto→𝐵) |
| 48 | 47 | r19.29an 3145 |
. 2
⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) → 𝐺:𝐵–onto→𝐵) |
| 49 | 18, 48 | impbida 800 |
1
⊢ (𝜑 → (𝐺:𝐵–onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |