Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐺:𝐵–onto→𝐵) → 𝐺:𝐵–onto→𝐵) |
2 | | mndractfo.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ Mnd) |
3 | | mndractfo.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐸) |
4 | | mndractfo.z |
. . . . . . 7
⊢ 0 =
(0g‘𝐸) |
5 | 3, 4 | mndidcl 18793 |
. . . . . 6
⊢ (𝐸 ∈ Mnd → 0 ∈ 𝐵) |
6 | 2, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → 0 ∈ 𝐵) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐺:𝐵–onto→𝐵) → 0 ∈ 𝐵) |
8 | | foelcdmi 6989 |
. . . 4
⊢ ((𝐺:𝐵–onto→𝐵 ∧ 0 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝐺‘𝑦) = 0 ) |
9 | 1, 7, 8 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ 𝐺:𝐵–onto→𝐵) → ∃𝑦 ∈ 𝐵 (𝐺‘𝑦) = 0 ) |
10 | | mndractfo.f |
. . . . . . 7
⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) |
11 | | oveq1 7461 |
. . . . . . 7
⊢ (𝑎 = 𝑦 → (𝑎 + 𝑋) = (𝑦 + 𝑋)) |
12 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐺:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
13 | | ovexd 7489 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐺:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 + 𝑋) ∈ V) |
14 | 10, 11, 12, 13 | fvmptd3 7058 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐺:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → (𝐺‘𝑦) = (𝑦 + 𝑋)) |
15 | 14 | eqeq1d 2736 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝐺‘𝑦) = 0 ↔ (𝑦 + 𝑋) = 0 )) |
16 | 15 | biimpd 229 |
. . . 4
⊢ (((𝜑 ∧ 𝐺:𝐵–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝐺‘𝑦) = 0 → (𝑦 + 𝑋) = 0 )) |
17 | 16 | reximdva 3170 |
. . 3
⊢ ((𝜑 ∧ 𝐺:𝐵–onto→𝐵) → (∃𝑦 ∈ 𝐵 (𝐺‘𝑦) = 0 → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
18 | 9, 17 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝐺:𝐵–onto→𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
19 | | mndractfo.p |
. . . . . . 7
⊢ + =
(+g‘𝐸) |
20 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐸 ∈ Mnd) |
21 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
22 | | mndractfo.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
23 | 22 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
24 | 3, 19, 20, 21, 23 | mndcld 33011 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 + 𝑋) ∈ 𝐵) |
25 | 24, 10 | fmptd 7154 |
. . . . 5
⊢ (𝜑 → 𝐺:𝐵⟶𝐵) |
26 | 25 | ad2antrr 725 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) → 𝐺:𝐵⟶𝐵) |
27 | | fveq2 6926 |
. . . . . . 7
⊢ (𝑥 = (𝑧 + 𝑦) → (𝐺‘𝑥) = (𝐺‘(𝑧 + 𝑦))) |
28 | 27 | eqeq2d 2745 |
. . . . . 6
⊢ (𝑥 = (𝑧 + 𝑦) → (𝑧 = (𝐺‘𝑥) ↔ 𝑧 = (𝐺‘(𝑧 + 𝑦)))) |
29 | 2 | ad3antrrr 729 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝐸 ∈ Mnd) |
30 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
31 | | simpllr 775 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
32 | 3, 19, 29, 30, 31 | mndcld 33011 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝑧 + 𝑦) ∈ 𝐵) |
33 | 22 | ad3antrrr 729 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
34 | 3, 19, 29, 30, 31, 33 | mndassd 33012 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → ((𝑧 + 𝑦) + 𝑋) = (𝑧 + (𝑦 + 𝑋))) |
35 | | oveq1 7461 |
. . . . . . . 8
⊢ (𝑎 = (𝑧 + 𝑦) → (𝑎 + 𝑋) = ((𝑧 + 𝑦) + 𝑋)) |
36 | | ovexd 7489 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → ((𝑧 + 𝑦) + 𝑋) ∈ V) |
37 | 10, 35, 32, 36 | fvmptd3 7058 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝐺‘(𝑧 + 𝑦)) = ((𝑧 + 𝑦) + 𝑋)) |
38 | | simplr 768 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝑦 + 𝑋) = 0 ) |
39 | 38 | oveq2d 7470 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝑧 + (𝑦 + 𝑋)) = (𝑧 + 0 )) |
40 | 3, 19, 4 | mndrid 18799 |
. . . . . . . . 9
⊢ ((𝐸 ∈ Mnd ∧ 𝑧 ∈ 𝐵) → (𝑧 + 0 ) = 𝑧) |
41 | 29, 30, 40 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → (𝑧 + 0 ) = 𝑧) |
42 | 39, 41 | eqtr2d 2775 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑧 = (𝑧 + (𝑦 + 𝑋))) |
43 | 34, 37, 42 | 3eqtr4rd 2785 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → 𝑧 = (𝐺‘(𝑧 + 𝑦))) |
44 | 28, 32, 43 | rspcedvdw 3636 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) ∧ 𝑧 ∈ 𝐵) → ∃𝑥 ∈ 𝐵 𝑧 = (𝐺‘𝑥)) |
45 | 44 | ralrimiva 3148 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) → ∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 𝑧 = (𝐺‘𝑥)) |
46 | | dffo3 7142 |
. . . 4
⊢ (𝐺:𝐵–onto→𝐵 ↔ (𝐺:𝐵⟶𝐵 ∧ ∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 𝑧 = (𝐺‘𝑥))) |
47 | 26, 45, 46 | sylanbrc 582 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝑦 + 𝑋) = 0 ) → 𝐺:𝐵–onto→𝐵) |
48 | 47 | r19.29an 3160 |
. 2
⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) → 𝐺:𝐵–onto→𝐵) |
49 | 18, 48 | impbida 800 |
1
⊢ (𝜑 → (𝐺:𝐵–onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |