Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndlrinv Structured version   Visualization version   GIF version

Theorem mndlrinv 32965
Description: In a monoid, if an element 𝑋 has both a left inverse 𝑀 and a right inverse 𝑁, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndlrinv.b 𝐵 = (Base‘𝐸)
mndlrinv.z 0 = (0g𝐸)
mndlrinv.p + = (+g𝐸)
mndlrinv.e (𝜑𝐸 ∈ Mnd)
mndlrinv.x (𝜑𝑋𝐵)
mndlrinv.m (𝜑𝑀𝐵)
mndlrinv.n (𝜑𝑁𝐵)
mndlrinv.1 (𝜑 → (𝑀 + 𝑋) = 0 )
mndlrinv.2 (𝜑 → (𝑋 + 𝑁) = 0 )
Assertion
Ref Expression
mndlrinv (𝜑𝑀 = 𝑁)

Proof of Theorem mndlrinv
StepHypRef Expression
1 mndlrinv.b . . . 4 𝐵 = (Base‘𝐸)
2 mndlrinv.p . . . 4 + = (+g𝐸)
3 mndlrinv.e . . . 4 (𝜑𝐸 ∈ Mnd)
4 mndlrinv.m . . . 4 (𝜑𝑀𝐵)
5 mndlrinv.x . . . 4 (𝜑𝑋𝐵)
6 mndlrinv.n . . . 4 (𝜑𝑁𝐵)
71, 2, 3, 4, 5, 6mndassd 32964 . . 3 (𝜑 → ((𝑀 + 𝑋) + 𝑁) = (𝑀 + (𝑋 + 𝑁)))
8 mndlrinv.1 . . . 4 (𝜑 → (𝑀 + 𝑋) = 0 )
98oveq1d 7402 . . 3 (𝜑 → ((𝑀 + 𝑋) + 𝑁) = ( 0 + 𝑁))
10 mndlrinv.2 . . . 4 (𝜑 → (𝑋 + 𝑁) = 0 )
1110oveq2d 7403 . . 3 (𝜑 → (𝑀 + (𝑋 + 𝑁)) = (𝑀 + 0 ))
127, 9, 113eqtr3rd 2773 . 2 (𝜑 → (𝑀 + 0 ) = ( 0 + 𝑁))
13 mndlrinv.z . . . 4 0 = (0g𝐸)
141, 2, 13mndrid 18682 . . 3 ((𝐸 ∈ Mnd ∧ 𝑀𝐵) → (𝑀 + 0 ) = 𝑀)
153, 4, 14syl2anc 584 . 2 (𝜑 → (𝑀 + 0 ) = 𝑀)
161, 2, 13mndlid 18681 . . 3 ((𝐸 ∈ Mnd ∧ 𝑁𝐵) → ( 0 + 𝑁) = 𝑁)
173, 6, 16syl2anc 584 . 2 (𝜑 → ( 0 + 𝑁) = 𝑁)
1812, 15, 173eqtr3d 2772 1 (𝜑𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Mndcmnd 18661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-riota 7344  df-ov 7390  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662
This theorem is referenced by:  mndlrinvb  32966  mndlactf1o  32971
  Copyright terms: Public domain W3C validator