Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndlrinv Structured version   Visualization version   GIF version

Theorem mndlrinv 32968
Description: In a monoid, if an element 𝑋 has both a left inverse 𝑀 and a right inverse 𝑁, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndlrinv.b 𝐵 = (Base‘𝐸)
mndlrinv.z 0 = (0g𝐸)
mndlrinv.p + = (+g𝐸)
mndlrinv.e (𝜑𝐸 ∈ Mnd)
mndlrinv.x (𝜑𝑋𝐵)
mndlrinv.m (𝜑𝑀𝐵)
mndlrinv.n (𝜑𝑁𝐵)
mndlrinv.1 (𝜑 → (𝑀 + 𝑋) = 0 )
mndlrinv.2 (𝜑 → (𝑋 + 𝑁) = 0 )
Assertion
Ref Expression
mndlrinv (𝜑𝑀 = 𝑁)

Proof of Theorem mndlrinv
StepHypRef Expression
1 mndlrinv.b . . . 4 𝐵 = (Base‘𝐸)
2 mndlrinv.p . . . 4 + = (+g𝐸)
3 mndlrinv.e . . . 4 (𝜑𝐸 ∈ Mnd)
4 mndlrinv.m . . . 4 (𝜑𝑀𝐵)
5 mndlrinv.x . . . 4 (𝜑𝑋𝐵)
6 mndlrinv.n . . . 4 (𝜑𝑁𝐵)
71, 2, 3, 4, 5, 6mndassd 32967 . . 3 (𝜑 → ((𝑀 + 𝑋) + 𝑁) = (𝑀 + (𝑋 + 𝑁)))
8 mndlrinv.1 . . . 4 (𝜑 → (𝑀 + 𝑋) = 0 )
98oveq1d 7428 . . 3 (𝜑 → ((𝑀 + 𝑋) + 𝑁) = ( 0 + 𝑁))
10 mndlrinv.2 . . . 4 (𝜑 → (𝑋 + 𝑁) = 0 )
1110oveq2d 7429 . . 3 (𝜑 → (𝑀 + (𝑋 + 𝑁)) = (𝑀 + 0 ))
127, 9, 113eqtr3rd 2778 . 2 (𝜑 → (𝑀 + 0 ) = ( 0 + 𝑁))
13 mndlrinv.z . . . 4 0 = (0g𝐸)
141, 2, 13mndrid 18737 . . 3 ((𝐸 ∈ Mnd ∧ 𝑀𝐵) → (𝑀 + 0 ) = 𝑀)
153, 4, 14syl2anc 584 . 2 (𝜑 → (𝑀 + 0 ) = 𝑀)
161, 2, 13mndlid 18736 . . 3 ((𝐸 ∈ Mnd ∧ 𝑁𝐵) → ( 0 + 𝑁) = 𝑁)
173, 6, 16syl2anc 584 . 2 (𝜑 → ( 0 + 𝑁) = 𝑁)
1812, 15, 173eqtr3d 2777 1 (𝜑𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  Basecbs 17229  +gcplusg 17273  0gc0g 17455  Mndcmnd 18716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-riota 7370  df-ov 7416  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717
This theorem is referenced by:  mndlrinvb  32969  mndlactf1o  32974
  Copyright terms: Public domain W3C validator