| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mndlrinv | Structured version Visualization version GIF version | ||
| Description: In a monoid, if an element 𝑋 has both a left inverse 𝑀 and a right inverse 𝑁, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| mndlrinv.b | ⊢ 𝐵 = (Base‘𝐸) |
| mndlrinv.z | ⊢ 0 = (0g‘𝐸) |
| mndlrinv.p | ⊢ + = (+g‘𝐸) |
| mndlrinv.e | ⊢ (𝜑 → 𝐸 ∈ Mnd) |
| mndlrinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| mndlrinv.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| mndlrinv.n | ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| mndlrinv.1 | ⊢ (𝜑 → (𝑀 + 𝑋) = 0 ) |
| mndlrinv.2 | ⊢ (𝜑 → (𝑋 + 𝑁) = 0 ) |
| Ref | Expression |
|---|---|
| mndlrinv | ⊢ (𝜑 → 𝑀 = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndlrinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐸) | |
| 2 | mndlrinv.p | . . . 4 ⊢ + = (+g‘𝐸) | |
| 3 | mndlrinv.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Mnd) | |
| 4 | mndlrinv.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 5 | mndlrinv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | mndlrinv.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | mndassd 32990 | . . 3 ⊢ (𝜑 → ((𝑀 + 𝑋) + 𝑁) = (𝑀 + (𝑋 + 𝑁))) |
| 8 | mndlrinv.1 | . . . 4 ⊢ (𝜑 → (𝑀 + 𝑋) = 0 ) | |
| 9 | 8 | oveq1d 7368 | . . 3 ⊢ (𝜑 → ((𝑀 + 𝑋) + 𝑁) = ( 0 + 𝑁)) |
| 10 | mndlrinv.2 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑁) = 0 ) | |
| 11 | 10 | oveq2d 7369 | . . 3 ⊢ (𝜑 → (𝑀 + (𝑋 + 𝑁)) = (𝑀 + 0 )) |
| 12 | 7, 9, 11 | 3eqtr3rd 2773 | . 2 ⊢ (𝜑 → (𝑀 + 0 ) = ( 0 + 𝑁)) |
| 13 | mndlrinv.z | . . . 4 ⊢ 0 = (0g‘𝐸) | |
| 14 | 1, 2, 13 | mndrid 18647 | . . 3 ⊢ ((𝐸 ∈ Mnd ∧ 𝑀 ∈ 𝐵) → (𝑀 + 0 ) = 𝑀) |
| 15 | 3, 4, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑀 + 0 ) = 𝑀) |
| 16 | 1, 2, 13 | mndlid 18646 | . . 3 ⊢ ((𝐸 ∈ Mnd ∧ 𝑁 ∈ 𝐵) → ( 0 + 𝑁) = 𝑁) |
| 17 | 3, 6, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 0 + 𝑁) = 𝑁) |
| 18 | 12, 15, 17 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → 𝑀 = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Mndcmnd 18626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 |
| This theorem is referenced by: mndlrinvb 32992 mndlactf1o 32997 |
| Copyright terms: Public domain | W3C validator |