Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndlrinv Structured version   Visualization version   GIF version

Theorem mndlrinv 33044
Description: In a monoid, if an element 𝑋 has both a left inverse 𝑀 and a right inverse 𝑁, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndlrinv.b 𝐵 = (Base‘𝐸)
mndlrinv.z 0 = (0g𝐸)
mndlrinv.p + = (+g𝐸)
mndlrinv.e (𝜑𝐸 ∈ Mnd)
mndlrinv.x (𝜑𝑋𝐵)
mndlrinv.m (𝜑𝑀𝐵)
mndlrinv.n (𝜑𝑁𝐵)
mndlrinv.1 (𝜑 → (𝑀 + 𝑋) = 0 )
mndlrinv.2 (𝜑 → (𝑋 + 𝑁) = 0 )
Assertion
Ref Expression
mndlrinv (𝜑𝑀 = 𝑁)

Proof of Theorem mndlrinv
StepHypRef Expression
1 mndlrinv.b . . . 4 𝐵 = (Base‘𝐸)
2 mndlrinv.p . . . 4 + = (+g𝐸)
3 mndlrinv.e . . . 4 (𝜑𝐸 ∈ Mnd)
4 mndlrinv.m . . . 4 (𝜑𝑀𝐵)
5 mndlrinv.x . . . 4 (𝜑𝑋𝐵)
6 mndlrinv.n . . . 4 (𝜑𝑁𝐵)
71, 2, 3, 4, 5, 6mndassd 33043 . . 3 (𝜑 → ((𝑀 + 𝑋) + 𝑁) = (𝑀 + (𝑋 + 𝑁)))
8 mndlrinv.1 . . . 4 (𝜑 → (𝑀 + 𝑋) = 0 )
98oveq1d 7453 . . 3 (𝜑 → ((𝑀 + 𝑋) + 𝑁) = ( 0 + 𝑁))
10 mndlrinv.2 . . . 4 (𝜑 → (𝑋 + 𝑁) = 0 )
1110oveq2d 7454 . . 3 (𝜑 → (𝑀 + (𝑋 + 𝑁)) = (𝑀 + 0 ))
127, 9, 113eqtr3rd 2786 . 2 (𝜑 → (𝑀 + 0 ) = ( 0 + 𝑁))
13 mndlrinv.z . . . 4 0 = (0g𝐸)
141, 2, 13mndrid 18790 . . 3 ((𝐸 ∈ Mnd ∧ 𝑀𝐵) → (𝑀 + 0 ) = 𝑀)
153, 4, 14syl2anc 584 . 2 (𝜑 → (𝑀 + 0 ) = 𝑀)
161, 2, 13mndlid 18789 . . 3 ((𝐸 ∈ Mnd ∧ 𝑁𝐵) → ( 0 + 𝑁) = 𝑁)
173, 6, 16syl2anc 584 . 2 (𝜑 → ( 0 + 𝑁) = 𝑁)
1812, 15, 173eqtr3d 2785 1 (𝜑𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6569  (class class class)co 7438  Basecbs 17254  +gcplusg 17307  0gc0g 17495  Mndcmnd 18769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-riota 7395  df-ov 7441  df-0g 17497  df-mgm 18675  df-sgrp 18754  df-mnd 18770
This theorem is referenced by:  mndlrinvb  33045  mndlactf1o  33050
  Copyright terms: Public domain W3C validator