Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndlrinv Structured version   Visualization version   GIF version

Theorem mndlrinv 33000
Description: In a monoid, if an element 𝑋 has both a left inverse 𝑀 and a right inverse 𝑁, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndlrinv.b 𝐵 = (Base‘𝐸)
mndlrinv.z 0 = (0g𝐸)
mndlrinv.p + = (+g𝐸)
mndlrinv.e (𝜑𝐸 ∈ Mnd)
mndlrinv.x (𝜑𝑋𝐵)
mndlrinv.m (𝜑𝑀𝐵)
mndlrinv.n (𝜑𝑁𝐵)
mndlrinv.1 (𝜑 → (𝑀 + 𝑋) = 0 )
mndlrinv.2 (𝜑 → (𝑋 + 𝑁) = 0 )
Assertion
Ref Expression
mndlrinv (𝜑𝑀 = 𝑁)

Proof of Theorem mndlrinv
StepHypRef Expression
1 mndlrinv.b . . . 4 𝐵 = (Base‘𝐸)
2 mndlrinv.p . . . 4 + = (+g𝐸)
3 mndlrinv.e . . . 4 (𝜑𝐸 ∈ Mnd)
4 mndlrinv.m . . . 4 (𝜑𝑀𝐵)
5 mndlrinv.x . . . 4 (𝜑𝑋𝐵)
6 mndlrinv.n . . . 4 (𝜑𝑁𝐵)
71, 2, 3, 4, 5, 6mndassd 32999 . . 3 (𝜑 → ((𝑀 + 𝑋) + 𝑁) = (𝑀 + (𝑋 + 𝑁)))
8 mndlrinv.1 . . . 4 (𝜑 → (𝑀 + 𝑋) = 0 )
98oveq1d 7361 . . 3 (𝜑 → ((𝑀 + 𝑋) + 𝑁) = ( 0 + 𝑁))
10 mndlrinv.2 . . . 4 (𝜑 → (𝑋 + 𝑁) = 0 )
1110oveq2d 7362 . . 3 (𝜑 → (𝑀 + (𝑋 + 𝑁)) = (𝑀 + 0 ))
127, 9, 113eqtr3rd 2775 . 2 (𝜑 → (𝑀 + 0 ) = ( 0 + 𝑁))
13 mndlrinv.z . . . 4 0 = (0g𝐸)
141, 2, 13mndrid 18660 . . 3 ((𝐸 ∈ Mnd ∧ 𝑀𝐵) → (𝑀 + 0 ) = 𝑀)
153, 4, 14syl2anc 584 . 2 (𝜑 → (𝑀 + 0 ) = 𝑀)
161, 2, 13mndlid 18659 . . 3 ((𝐸 ∈ Mnd ∧ 𝑁𝐵) → ( 0 + 𝑁) = 𝑁)
173, 6, 16syl2anc 584 . 2 (𝜑 → ( 0 + 𝑁) = 𝑁)
1812, 15, 173eqtr3d 2774 1 (𝜑𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  0gc0g 17340  Mndcmnd 18639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640
This theorem is referenced by:  mndlrinvb  33001  mndlactf1o  33006
  Copyright terms: Public domain W3C validator