![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndlrinv | Structured version Visualization version GIF version |
Description: In a monoid, if an element 𝑋 has both a left inverse 𝑀 and a right inverse 𝑁, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
Ref | Expression |
---|---|
mndlrinv.b | ⊢ 𝐵 = (Base‘𝐸) |
mndlrinv.z | ⊢ 0 = (0g‘𝐸) |
mndlrinv.p | ⊢ + = (+g‘𝐸) |
mndlrinv.e | ⊢ (𝜑 → 𝐸 ∈ Mnd) |
mndlrinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mndlrinv.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
mndlrinv.n | ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
mndlrinv.1 | ⊢ (𝜑 → (𝑀 + 𝑋) = 0 ) |
mndlrinv.2 | ⊢ (𝜑 → (𝑋 + 𝑁) = 0 ) |
Ref | Expression |
---|---|
mndlrinv | ⊢ (𝜑 → 𝑀 = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndlrinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐸) | |
2 | mndlrinv.p | . . . 4 ⊢ + = (+g‘𝐸) | |
3 | mndlrinv.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Mnd) | |
4 | mndlrinv.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
5 | mndlrinv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | mndlrinv.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | mndassd 33043 | . . 3 ⊢ (𝜑 → ((𝑀 + 𝑋) + 𝑁) = (𝑀 + (𝑋 + 𝑁))) |
8 | mndlrinv.1 | . . . 4 ⊢ (𝜑 → (𝑀 + 𝑋) = 0 ) | |
9 | 8 | oveq1d 7453 | . . 3 ⊢ (𝜑 → ((𝑀 + 𝑋) + 𝑁) = ( 0 + 𝑁)) |
10 | mndlrinv.2 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑁) = 0 ) | |
11 | 10 | oveq2d 7454 | . . 3 ⊢ (𝜑 → (𝑀 + (𝑋 + 𝑁)) = (𝑀 + 0 )) |
12 | 7, 9, 11 | 3eqtr3rd 2786 | . 2 ⊢ (𝜑 → (𝑀 + 0 ) = ( 0 + 𝑁)) |
13 | mndlrinv.z | . . . 4 ⊢ 0 = (0g‘𝐸) | |
14 | 1, 2, 13 | mndrid 18790 | . . 3 ⊢ ((𝐸 ∈ Mnd ∧ 𝑀 ∈ 𝐵) → (𝑀 + 0 ) = 𝑀) |
15 | 3, 4, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑀 + 0 ) = 𝑀) |
16 | 1, 2, 13 | mndlid 18789 | . . 3 ⊢ ((𝐸 ∈ Mnd ∧ 𝑁 ∈ 𝐵) → ( 0 + 𝑁) = 𝑁) |
17 | 3, 6, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 0 + 𝑁) = 𝑁) |
18 | 12, 15, 17 | 3eqtr3d 2785 | 1 ⊢ (𝜑 → 𝑀 = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 +gcplusg 17307 0gc0g 17495 Mndcmnd 18769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-riota 7395 df-ov 7441 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 |
This theorem is referenced by: mndlrinvb 33045 mndlactf1o 33050 |
Copyright terms: Public domain | W3C validator |