Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndlrinv Structured version   Visualization version   GIF version

Theorem mndlrinv 33012
Description: In a monoid, if an element 𝑋 has both a left inverse 𝑀 and a right inverse 𝑁, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndlrinv.b 𝐵 = (Base‘𝐸)
mndlrinv.z 0 = (0g𝐸)
mndlrinv.p + = (+g𝐸)
mndlrinv.e (𝜑𝐸 ∈ Mnd)
mndlrinv.x (𝜑𝑋𝐵)
mndlrinv.m (𝜑𝑀𝐵)
mndlrinv.n (𝜑𝑁𝐵)
mndlrinv.1 (𝜑 → (𝑀 + 𝑋) = 0 )
mndlrinv.2 (𝜑 → (𝑋 + 𝑁) = 0 )
Assertion
Ref Expression
mndlrinv (𝜑𝑀 = 𝑁)

Proof of Theorem mndlrinv
StepHypRef Expression
1 mndlrinv.b . . . 4 𝐵 = (Base‘𝐸)
2 mndlrinv.p . . . 4 + = (+g𝐸)
3 mndlrinv.e . . . 4 (𝜑𝐸 ∈ Mnd)
4 mndlrinv.m . . . 4 (𝜑𝑀𝐵)
5 mndlrinv.x . . . 4 (𝜑𝑋𝐵)
6 mndlrinv.n . . . 4 (𝜑𝑁𝐵)
71, 2, 3, 4, 5, 6mndassd 33011 . . 3 (𝜑 → ((𝑀 + 𝑋) + 𝑁) = (𝑀 + (𝑋 + 𝑁)))
8 mndlrinv.1 . . . 4 (𝜑 → (𝑀 + 𝑋) = 0 )
98oveq1d 7465 . . 3 (𝜑 → ((𝑀 + 𝑋) + 𝑁) = ( 0 + 𝑁))
10 mndlrinv.2 . . . 4 (𝜑 → (𝑋 + 𝑁) = 0 )
1110oveq2d 7466 . . 3 (𝜑 → (𝑀 + (𝑋 + 𝑁)) = (𝑀 + 0 ))
127, 9, 113eqtr3rd 2789 . 2 (𝜑 → (𝑀 + 0 ) = ( 0 + 𝑁))
13 mndlrinv.z . . . 4 0 = (0g𝐸)
141, 2, 13mndrid 18795 . . 3 ((𝐸 ∈ Mnd ∧ 𝑀𝐵) → (𝑀 + 0 ) = 𝑀)
153, 4, 14syl2anc 583 . 2 (𝜑 → (𝑀 + 0 ) = 𝑀)
161, 2, 13mndlid 18794 . . 3 ((𝐸 ∈ Mnd ∧ 𝑁𝐵) → ( 0 + 𝑁) = 𝑁)
173, 6, 16syl2anc 583 . 2 (𝜑 → ( 0 + 𝑁) = 𝑁)
1812, 15, 173eqtr3d 2788 1 (𝜑𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6575  (class class class)co 7450  Basecbs 17260  +gcplusg 17313  0gc0g 17501  Mndcmnd 18774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6527  df-fun 6577  df-fv 6583  df-riota 7406  df-ov 7453  df-0g 17503  df-mgm 18680  df-sgrp 18759  df-mnd 18775
This theorem is referenced by:  mndlrinvb  33013  mndlactf1o  33018
  Copyright terms: Public domain W3C validator