Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumwun Structured version   Visualization version   GIF version

Theorem gsumwun 33048
Description: In a commutative ring, a group sum of a word 𝑊 of characters taken from two submonoids 𝐸 and 𝐹 can be written as a simple sum. (Contributed by Thierry Arnoux, 6-Oct-2025.)
Hypotheses
Ref Expression
gsumwun.p + = (+g𝑀)
gsumwun.m (𝜑𝑀 ∈ CMnd)
gsumwun.e (𝜑𝐸 ∈ (SubMnd‘𝑀))
gsumwun.f (𝜑𝐹 ∈ (SubMnd‘𝑀))
gsumwun.w (𝜑𝑊 ∈ Word (𝐸𝐹))
Assertion
Ref Expression
gsumwun (𝜑 → ∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑊) = (𝑒 + 𝑓))
Distinct variable groups:   + ,𝑒,𝑓   𝑒,𝐸,𝑓   𝑒,𝐹,𝑓   𝑒,𝑀,𝑓   𝑒,𝑊,𝑓   𝜑,𝑒,𝑓

Proof of Theorem gsumwun
Dummy variables 𝑖 𝑗 𝑣 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumwun.w . 2 (𝜑𝑊 ∈ Word (𝐸𝐹))
2 oveq2 7377 . . . . . 6 (𝑣 = ∅ → (𝑀 Σg 𝑣) = (𝑀 Σg ∅))
32eqeq1d 2731 . . . . 5 (𝑣 = ∅ → ((𝑀 Σg 𝑣) = (𝑒 + 𝑓) ↔ (𝑀 Σg ∅) = (𝑒 + 𝑓)))
432rexbidv 3200 . . . 4 (𝑣 = ∅ → (∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑣) = (𝑒 + 𝑓) ↔ ∃𝑒𝐸𝑓𝐹 (𝑀 Σg ∅) = (𝑒 + 𝑓)))
54imbi2d 340 . . 3 (𝑣 = ∅ → ((𝜑 → ∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑣) = (𝑒 + 𝑓)) ↔ (𝜑 → ∃𝑒𝐸𝑓𝐹 (𝑀 Σg ∅) = (𝑒 + 𝑓))))
6 oveq2 7377 . . . . . 6 (𝑣 = 𝑤 → (𝑀 Σg 𝑣) = (𝑀 Σg 𝑤))
76eqeq1d 2731 . . . . 5 (𝑣 = 𝑤 → ((𝑀 Σg 𝑣) = (𝑒 + 𝑓) ↔ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)))
872rexbidv 3200 . . . 4 (𝑣 = 𝑤 → (∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑣) = (𝑒 + 𝑓) ↔ ∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑤) = (𝑒 + 𝑓)))
98imbi2d 340 . . 3 (𝑣 = 𝑤 → ((𝜑 → ∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑣) = (𝑒 + 𝑓)) ↔ (𝜑 → ∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑤) = (𝑒 + 𝑓))))
10 oveq1 7376 . . . . . . 7 (𝑒 = 𝑖 → (𝑒 + 𝑓) = (𝑖 + 𝑓))
1110eqeq2d 2740 . . . . . 6 (𝑒 = 𝑖 → ((𝑀 Σg 𝑣) = (𝑒 + 𝑓) ↔ (𝑀 Σg 𝑣) = (𝑖 + 𝑓)))
12 oveq2 7377 . . . . . . 7 (𝑓 = 𝑗 → (𝑖 + 𝑓) = (𝑖 + 𝑗))
1312eqeq2d 2740 . . . . . 6 (𝑓 = 𝑗 → ((𝑀 Σg 𝑣) = (𝑖 + 𝑓) ↔ (𝑀 Σg 𝑣) = (𝑖 + 𝑗)))
1411, 13cbvrex2vw 3218 . . . . 5 (∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑣) = (𝑒 + 𝑓) ↔ ∃𝑖𝐸𝑗𝐹 (𝑀 Σg 𝑣) = (𝑖 + 𝑗))
15 oveq2 7377 . . . . . . 7 (𝑣 = (𝑤 ++ ⟨“𝑥”⟩) → (𝑀 Σg 𝑣) = (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)))
1615eqeq1d 2731 . . . . . 6 (𝑣 = (𝑤 ++ ⟨“𝑥”⟩) → ((𝑀 Σg 𝑣) = (𝑖 + 𝑗) ↔ (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗)))
17162rexbidv 3200 . . . . 5 (𝑣 = (𝑤 ++ ⟨“𝑥”⟩) → (∃𝑖𝐸𝑗𝐹 (𝑀 Σg 𝑣) = (𝑖 + 𝑗) ↔ ∃𝑖𝐸𝑗𝐹 (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗)))
1814, 17bitrid 283 . . . 4 (𝑣 = (𝑤 ++ ⟨“𝑥”⟩) → (∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑣) = (𝑒 + 𝑓) ↔ ∃𝑖𝐸𝑗𝐹 (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗)))
1918imbi2d 340 . . 3 (𝑣 = (𝑤 ++ ⟨“𝑥”⟩) → ((𝜑 → ∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑣) = (𝑒 + 𝑓)) ↔ (𝜑 → ∃𝑖𝐸𝑗𝐹 (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗))))
20 oveq2 7377 . . . . . 6 (𝑣 = 𝑊 → (𝑀 Σg 𝑣) = (𝑀 Σg 𝑊))
2120eqeq1d 2731 . . . . 5 (𝑣 = 𝑊 → ((𝑀 Σg 𝑣) = (𝑒 + 𝑓) ↔ (𝑀 Σg 𝑊) = (𝑒 + 𝑓)))
22212rexbidv 3200 . . . 4 (𝑣 = 𝑊 → (∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑣) = (𝑒 + 𝑓) ↔ ∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑊) = (𝑒 + 𝑓)))
2322imbi2d 340 . . 3 (𝑣 = 𝑊 → ((𝜑 → ∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑣) = (𝑒 + 𝑓)) ↔ (𝜑 → ∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑊) = (𝑒 + 𝑓))))
24 oveq1 7376 . . . . 5 (𝑒 = (0g𝑀) → (𝑒 + 𝑓) = ((0g𝑀) + 𝑓))
2524eqeq2d 2740 . . . 4 (𝑒 = (0g𝑀) → ((𝑀 Σg ∅) = (𝑒 + 𝑓) ↔ (𝑀 Σg ∅) = ((0g𝑀) + 𝑓)))
26 oveq2 7377 . . . . 5 (𝑓 = (0g𝑀) → ((0g𝑀) + 𝑓) = ((0g𝑀) + (0g𝑀)))
2726eqeq2d 2740 . . . 4 (𝑓 = (0g𝑀) → ((𝑀 Σg ∅) = ((0g𝑀) + 𝑓) ↔ (𝑀 Σg ∅) = ((0g𝑀) + (0g𝑀))))
28 gsumwun.e . . . . 5 (𝜑𝐸 ∈ (SubMnd‘𝑀))
29 eqid 2729 . . . . . 6 (0g𝑀) = (0g𝑀)
3029subm0cl 18720 . . . . 5 (𝐸 ∈ (SubMnd‘𝑀) → (0g𝑀) ∈ 𝐸)
3128, 30syl 17 . . . 4 (𝜑 → (0g𝑀) ∈ 𝐸)
32 gsumwun.f . . . . 5 (𝜑𝐹 ∈ (SubMnd‘𝑀))
3329subm0cl 18720 . . . . 5 (𝐹 ∈ (SubMnd‘𝑀) → (0g𝑀) ∈ 𝐹)
3432, 33syl 17 . . . 4 (𝜑 → (0g𝑀) ∈ 𝐹)
3529gsum0 18593 . . . . 5 (𝑀 Σg ∅) = (0g𝑀)
36 gsumwun.m . . . . . . 7 (𝜑𝑀 ∈ CMnd)
3736cmnmndd 19718 . . . . . 6 (𝜑𝑀 ∈ Mnd)
38 eqid 2729 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
3938, 29mndidcl 18658 . . . . . 6 (𝑀 ∈ Mnd → (0g𝑀) ∈ (Base‘𝑀))
40 gsumwun.p . . . . . . 7 + = (+g𝑀)
4138, 40, 29mndlid 18663 . . . . . 6 ((𝑀 ∈ Mnd ∧ (0g𝑀) ∈ (Base‘𝑀)) → ((0g𝑀) + (0g𝑀)) = (0g𝑀))
4237, 39, 41syl2anc2 585 . . . . 5 (𝜑 → ((0g𝑀) + (0g𝑀)) = (0g𝑀))
4335, 42eqtr4id 2783 . . . 4 (𝜑 → (𝑀 Σg ∅) = ((0g𝑀) + (0g𝑀)))
4425, 27, 31, 34, 432rspcedvdw 3599 . . 3 (𝜑 → ∃𝑒𝐸𝑓𝐹 (𝑀 Σg ∅) = (𝑒 + 𝑓))
45 oveq1 7376 . . . . . . . . . . 11 (𝑖 = (𝑒 + 𝑥) → (𝑖 + 𝑗) = ((𝑒 + 𝑥) + 𝑗))
4645eqeq2d 2740 . . . . . . . . . 10 (𝑖 = (𝑒 + 𝑥) → ((𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗) ↔ (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = ((𝑒 + 𝑥) + 𝑗)))
47 oveq2 7377 . . . . . . . . . . 11 (𝑗 = 𝑓 → ((𝑒 + 𝑥) + 𝑗) = ((𝑒 + 𝑥) + 𝑓))
4847eqeq2d 2740 . . . . . . . . . 10 (𝑗 = 𝑓 → ((𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = ((𝑒 + 𝑥) + 𝑗) ↔ (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = ((𝑒 + 𝑥) + 𝑓)))
4928ad6antr 736 . . . . . . . . . . 11 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐸) → 𝐸 ∈ (SubMnd‘𝑀))
50 simp-4r 783 . . . . . . . . . . 11 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐸) → 𝑒𝐸)
51 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐸) → 𝑥𝐸)
5240, 49, 50, 51submcld 33019 . . . . . . . . . 10 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐸) → (𝑒 + 𝑥) ∈ 𝐸)
53 simpllr 775 . . . . . . . . . 10 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐸) → 𝑓𝐹)
5437ad5antr 734 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → 𝑀 ∈ Mnd)
5538submss 18718 . . . . . . . . . . . . . . . . . 18 (𝐸 ∈ (SubMnd‘𝑀) → 𝐸 ⊆ (Base‘𝑀))
5628, 55syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ⊆ (Base‘𝑀))
5738submss 18718 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (SubMnd‘𝑀) → 𝐹 ⊆ (Base‘𝑀))
5832, 57syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ⊆ (Base‘𝑀))
5956, 58unssd 4151 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸𝐹) ⊆ (Base‘𝑀))
60 sswrd 14463 . . . . . . . . . . . . . . . 16 ((𝐸𝐹) ⊆ (Base‘𝑀) → Word (𝐸𝐹) ⊆ Word (Base‘𝑀))
6159, 60syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Word (𝐸𝐹) ⊆ Word (Base‘𝑀))
6261sselda 3943 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word (Base‘𝑀))
6362ad4antr 732 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → 𝑤 ∈ Word (Base‘𝑀))
6459adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → (𝐸𝐹) ⊆ (Base‘𝑀))
6564sselda 3943 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) → 𝑥 ∈ (Base‘𝑀))
6665ad3antrrr 730 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → 𝑥 ∈ (Base‘𝑀))
6738, 40gsumccatsn 18752 . . . . . . . . . . . . 13 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑤) + 𝑥))
6854, 63, 66, 67syl3anc 1373 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑤) + 𝑥))
69 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → (𝑀 Σg 𝑤) = (𝑒 + 𝑓))
7069oveq1d 7384 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → ((𝑀 Σg 𝑤) + 𝑥) = ((𝑒 + 𝑓) + 𝑥))
7156ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) → 𝐸 ⊆ (Base‘𝑀))
7271sselda 3943 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) → 𝑒 ∈ (Base‘𝑀))
7372ad2antrr 726 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → 𝑒 ∈ (Base‘𝑀))
7458ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) → 𝐹 ⊆ (Base‘𝑀))
7574sselda 3943 . . . . . . . . . . . . . 14 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) → 𝑓 ∈ (Base‘𝑀))
7675adantr 480 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → 𝑓 ∈ (Base‘𝑀))
7736ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → 𝑀 ∈ CMnd)
7838, 40cmncom 19712 . . . . . . . . . . . . . 14 ((𝑀 ∈ CMnd ∧ 𝑓 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑓 + 𝑥) = (𝑥 + 𝑓))
7977, 76, 66, 78syl3anc 1373 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → (𝑓 + 𝑥) = (𝑥 + 𝑓))
8038, 40, 54, 73, 76, 66, 79mnd32g 18655 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → ((𝑒 + 𝑓) + 𝑥) = ((𝑒 + 𝑥) + 𝑓))
8168, 70, 803eqtrd 2768 . . . . . . . . . . 11 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = ((𝑒 + 𝑥) + 𝑓))
8281adantr 480 . . . . . . . . . 10 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐸) → (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = ((𝑒 + 𝑥) + 𝑓))
8346, 48, 52, 53, 822rspcedvdw 3599 . . . . . . . . 9 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐸) → ∃𝑖𝐸𝑗𝐹 (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗))
84 oveq1 7376 . . . . . . . . . . 11 (𝑖 = 𝑒 → (𝑖 + 𝑗) = (𝑒 + 𝑗))
8584eqeq2d 2740 . . . . . . . . . 10 (𝑖 = 𝑒 → ((𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗) ↔ (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑒 + 𝑗)))
86 oveq2 7377 . . . . . . . . . . 11 (𝑗 = (𝑓 + 𝑥) → (𝑒 + 𝑗) = (𝑒 + (𝑓 + 𝑥)))
8786eqeq2d 2740 . . . . . . . . . 10 (𝑗 = (𝑓 + 𝑥) → ((𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑒 + 𝑗) ↔ (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑒 + (𝑓 + 𝑥))))
88 simp-4r 783 . . . . . . . . . 10 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐹) → 𝑒𝐸)
8932ad6antr 736 . . . . . . . . . . 11 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐹) → 𝐹 ∈ (SubMnd‘𝑀))
90 simpllr 775 . . . . . . . . . . 11 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐹) → 𝑓𝐹)
91 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐹) → 𝑥𝐹)
9240, 89, 90, 91submcld 33019 . . . . . . . . . 10 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐹) → (𝑓 + 𝑥) ∈ 𝐹)
9338, 40, 54, 73, 76, 66mndassd 33007 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → ((𝑒 + 𝑓) + 𝑥) = (𝑒 + (𝑓 + 𝑥)))
9468, 70, 933eqtrd 2768 . . . . . . . . . . 11 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑒 + (𝑓 + 𝑥)))
9594adantr 480 . . . . . . . . . 10 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐹) → (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑒 + (𝑓 + 𝑥)))
9685, 87, 88, 92, 952rspcedvdw 3599 . . . . . . . . 9 (((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) ∧ 𝑥𝐹) → ∃𝑖𝐸𝑗𝐹 (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗))
97 elun 4112 . . . . . . . . . . 11 (𝑥 ∈ (𝐸𝐹) ↔ (𝑥𝐸𝑥𝐹))
9897biimpi 216 . . . . . . . . . 10 (𝑥 ∈ (𝐸𝐹) → (𝑥𝐸𝑥𝐹))
9998ad4antlr 733 . . . . . . . . 9 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → (𝑥𝐸𝑥𝐹))
10083, 96, 99mpjaodan 960 . . . . . . . 8 ((((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → ∃𝑖𝐸𝑗𝐹 (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗))
101100r19.29ffa 32450 . . . . . . 7 ((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → ∃𝑖𝐸𝑗𝐹 (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗))
102101ex 412 . . . . . 6 (((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑥 ∈ (𝐸𝐹)) → (∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑤) = (𝑒 + 𝑓) → ∃𝑖𝐸𝑗𝐹 (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗)))
103102expl 457 . . . . 5 (𝜑 → ((𝑤 ∈ Word (𝐸𝐹) ∧ 𝑥 ∈ (𝐸𝐹)) → (∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑤) = (𝑒 + 𝑓) → ∃𝑖𝐸𝑗𝐹 (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗))))
104103com12 32 . . . 4 ((𝑤 ∈ Word (𝐸𝐹) ∧ 𝑥 ∈ (𝐸𝐹)) → (𝜑 → (∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑤) = (𝑒 + 𝑓) → ∃𝑖𝐸𝑗𝐹 (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗))))
105104a2d 29 . . 3 ((𝑤 ∈ Word (𝐸𝐹) ∧ 𝑥 ∈ (𝐸𝐹)) → ((𝜑 → ∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑤) = (𝑒 + 𝑓)) → (𝜑 → ∃𝑖𝐸𝑗𝐹 (𝑀 Σg (𝑤 ++ ⟨“𝑥”⟩)) = (𝑖 + 𝑗))))
1065, 9, 19, 23, 44, 105wrdind 14663 . 2 (𝑊 ∈ Word (𝐸𝐹) → (𝜑 → ∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑊) = (𝑒 + 𝑓)))
1071, 106mpcom 38 1 (𝜑 → ∃𝑒𝐸𝑓𝐹 (𝑀 Σg 𝑊) = (𝑒 + 𝑓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053  cun 3909  wss 3911  c0 4292  cfv 6499  (class class class)co 7369  Word cword 14454   ++ cconcat 14511  ⟨“cs1 14536  Basecbs 17155  +gcplusg 17196  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18643  SubMndcsubmnd 18691  CMndccmn 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-cmn 19696
This theorem is referenced by:  elrgspnsubrunlem2  33215
  Copyright terms: Public domain W3C validator