Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumrp0cl Structured version   Visualization version   GIF version

Theorem fsumrp0cl 32183
Description: Closure of a finite sum of nonnegative reals. (Contributed by Thierry Arnoux, 25-Jun-2017.)
Hypotheses
Ref Expression
fsumrp0cl.1 (𝜑𝐴 ∈ Fin)
fsumrp0cl.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
fsumrp0cl (𝜑 → Σ𝑘𝐴 𝐵 ∈ (0[,)+∞))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumrp0cl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 13429 . . . 4 (0[,)+∞) ⊆ ℝ
2 ax-resscn 11163 . . . 4 ℝ ⊆ ℂ
31, 2sstri 3990 . . 3 (0[,)+∞) ⊆ ℂ
43a1i 11 . 2 (𝜑 → (0[,)+∞) ⊆ ℂ)
5 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ (0[,)+∞))
61, 5sselid 3979 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ ℝ)
7 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ (0[,)+∞))
81, 7sselid 3979 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ ℝ)
96, 8readdcld 11239 . . . 4 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ ℝ)
109rexrd 11260 . . 3 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ ℝ*)
11 0xr 11257 . . . . . . 7 0 ∈ ℝ*
12 pnfxr 11264 . . . . . . 7 +∞ ∈ ℝ*
13 elico1 13363 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞)))
1411, 12, 13mp2an 690 . . . . . 6 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞))
1514simp2bi 1146 . . . . 5 (𝑥 ∈ (0[,)+∞) → 0 ≤ 𝑥)
165, 15syl 17 . . . 4 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ 𝑥)
17 elico1 13363 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞)))
1811, 12, 17mp2an 690 . . . . . 6 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞))
1918simp2bi 1146 . . . . 5 (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦)
207, 19syl 17 . . . 4 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ 𝑦)
216, 8, 16, 20addge0d 11786 . . 3 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ (𝑥 + 𝑦))
22 ltpnf 13096 . . . 4 ((𝑥 + 𝑦) ∈ ℝ → (𝑥 + 𝑦) < +∞)
239, 22syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) < +∞)
24 elico1 13363 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑥 + 𝑦) ∈ (0[,)+∞) ↔ ((𝑥 + 𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥 + 𝑦) ∧ (𝑥 + 𝑦) < +∞)))
2511, 12, 24mp2an 690 . . 3 ((𝑥 + 𝑦) ∈ (0[,)+∞) ↔ ((𝑥 + 𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥 + 𝑦) ∧ (𝑥 + 𝑦) < +∞))
2610, 21, 23, 25syl3anbrc 1343 . 2 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞))
27 fsumrp0cl.1 . 2 (𝜑𝐴 ∈ Fin)
28 fsumrp0cl.2 . 2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
29 0e0icopnf 13431 . . 3 0 ∈ (0[,)+∞)
3029a1i 11 . 2 (𝜑 → 0 ∈ (0[,)+∞))
314, 26, 27, 28, 30fsumcllem 15674 1 (𝜑 → Σ𝑘𝐴 𝐵 ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wcel 2106  wss 3947   class class class wbr 5147  (class class class)co 7405  Fincfn 8935  cc 11104  cr 11105  0cc0 11106   + caddc 11109  +∞cpnf 11241  *cxr 11243   < clt 11244  cle 11245  [,)cico 13322  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629
This theorem is referenced by:  esumcvg  33072
  Copyright terms: Public domain W3C validator