![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumrp0cl | Structured version Visualization version GIF version |
Description: Closure of a finite sum of nonnegative reals. (Contributed by Thierry Arnoux, 25-Jun-2017.) |
Ref | Expression |
---|---|
fsumrp0cl.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumrp0cl.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
fsumrp0cl | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 13429 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | ax-resscn 11163 | . . . 4 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 3990 | . . 3 ⊢ (0[,)+∞) ⊆ ℂ |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (0[,)+∞) ⊆ ℂ) |
5 | simprl 769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ (0[,)+∞)) | |
6 | 1, 5 | sselid 3979 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ ℝ) |
7 | simprr 771 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ (0[,)+∞)) | |
8 | 1, 7 | sselid 3979 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ ℝ) |
9 | 6, 8 | readdcld 11239 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ ℝ) |
10 | 9 | rexrd 11260 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ ℝ*) |
11 | 0xr 11257 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
12 | pnfxr 11264 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
13 | elico1 13363 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ∧ 𝑥 < +∞))) | |
14 | 11, 12, 13 | mp2an 690 | . . . . . 6 ⊢ (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ∧ 𝑥 < +∞)) |
15 | 14 | simp2bi 1146 | . . . . 5 ⊢ (𝑥 ∈ (0[,)+∞) → 0 ≤ 𝑥) |
16 | 5, 15 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ 𝑥) |
17 | elico1 13363 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦 ∧ 𝑦 < +∞))) | |
18 | 11, 12, 17 | mp2an 690 | . . . . . 6 ⊢ (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦 ∧ 𝑦 < +∞)) |
19 | 18 | simp2bi 1146 | . . . . 5 ⊢ (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦) |
20 | 7, 19 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ 𝑦) |
21 | 6, 8, 16, 20 | addge0d 11786 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ (𝑥 + 𝑦)) |
22 | ltpnf 13096 | . . . 4 ⊢ ((𝑥 + 𝑦) ∈ ℝ → (𝑥 + 𝑦) < +∞) | |
23 | 9, 22 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) < +∞) |
24 | elico1 13363 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑥 + 𝑦) ∈ (0[,)+∞) ↔ ((𝑥 + 𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥 + 𝑦) ∧ (𝑥 + 𝑦) < +∞))) | |
25 | 11, 12, 24 | mp2an 690 | . . 3 ⊢ ((𝑥 + 𝑦) ∈ (0[,)+∞) ↔ ((𝑥 + 𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥 + 𝑦) ∧ (𝑥 + 𝑦) < +∞)) |
26 | 10, 21, 23, 25 | syl3anbrc 1343 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞)) |
27 | fsumrp0cl.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
28 | fsumrp0cl.2 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | |
29 | 0e0icopnf 13431 | . . 3 ⊢ 0 ∈ (0[,)+∞) | |
30 | 29 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ (0[,)+∞)) |
31 | 4, 26, 27, 28, 30 | fsumcllem 15674 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ⊆ wss 3947 class class class wbr 5147 (class class class)co 7405 Fincfn 8935 ℂcc 11104 ℝcr 11105 0cc0 11106 + caddc 11109 +∞cpnf 11241 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 [,)cico 13322 Σcsu 15628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-ico 13326 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 |
This theorem is referenced by: esumcvg 33072 |
Copyright terms: Public domain | W3C validator |