![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumrp0cl | Structured version Visualization version GIF version |
Description: Closure of a finite sum of nonnegative reals. (Contributed by Thierry Arnoux, 25-Jun-2017.) |
Ref | Expression |
---|---|
fsumrp0cl.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumrp0cl.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
fsumrp0cl | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 13516 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | ax-resscn 11241 | . . . 4 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 4018 | . . 3 ⊢ (0[,)+∞) ⊆ ℂ |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (0[,)+∞) ⊆ ℂ) |
5 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ (0[,)+∞)) | |
6 | 1, 5 | sselid 4006 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ ℝ) |
7 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ (0[,)+∞)) | |
8 | 1, 7 | sselid 4006 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ ℝ) |
9 | 6, 8 | readdcld 11319 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ ℝ) |
10 | 9 | rexrd 11340 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ ℝ*) |
11 | 0xr 11337 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
12 | pnfxr 11344 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
13 | elico1 13450 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ∧ 𝑥 < +∞))) | |
14 | 11, 12, 13 | mp2an 691 | . . . . . 6 ⊢ (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ∧ 𝑥 < +∞)) |
15 | 14 | simp2bi 1146 | . . . . 5 ⊢ (𝑥 ∈ (0[,)+∞) → 0 ≤ 𝑥) |
16 | 5, 15 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ 𝑥) |
17 | elico1 13450 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦 ∧ 𝑦 < +∞))) | |
18 | 11, 12, 17 | mp2an 691 | . . . . . 6 ⊢ (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦 ∧ 𝑦 < +∞)) |
19 | 18 | simp2bi 1146 | . . . . 5 ⊢ (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦) |
20 | 7, 19 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ 𝑦) |
21 | 6, 8, 16, 20 | addge0d 11866 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 0 ≤ (𝑥 + 𝑦)) |
22 | ltpnf 13183 | . . . 4 ⊢ ((𝑥 + 𝑦) ∈ ℝ → (𝑥 + 𝑦) < +∞) | |
23 | 9, 22 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) < +∞) |
24 | elico1 13450 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑥 + 𝑦) ∈ (0[,)+∞) ↔ ((𝑥 + 𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥 + 𝑦) ∧ (𝑥 + 𝑦) < +∞))) | |
25 | 11, 12, 24 | mp2an 691 | . . 3 ⊢ ((𝑥 + 𝑦) ∈ (0[,)+∞) ↔ ((𝑥 + 𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥 + 𝑦) ∧ (𝑥 + 𝑦) < +∞)) |
26 | 10, 21, 23, 25 | syl3anbrc 1343 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞)) |
27 | fsumrp0cl.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
28 | fsumrp0cl.2 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | |
29 | 0e0icopnf 13518 | . . 3 ⊢ 0 ∈ (0[,)+∞) | |
30 | 29 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ (0[,)+∞)) |
31 | 4, 26, 27, 28, 30 | fsumcllem 15780 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 (class class class)co 7448 Fincfn 9003 ℂcc 11182 ℝcr 11183 0cc0 11184 + caddc 11187 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 [,)cico 13409 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-ico 13413 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 |
This theorem is referenced by: esumcvg 34050 |
Copyright terms: Public domain | W3C validator |