Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fxpsubm Structured version   Visualization version   GIF version

Theorem fxpsubm 33148
Description: Provided the group action 𝐴 induces monoid automorphisms, the set of fixed points of 𝐴 on a monoid 𝑊 is a submonoid, which could be called the fixed submonoid under 𝐴. (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
fxpsubm.b 𝐵 = (Base‘𝐺)
fxpsubm.c 𝐶 = (Base‘𝑊)
fxpsubm.f 𝐹 = (𝑥𝐶 ↦ (𝑝𝐴𝑥))
fxpsubm.a (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
fxpsubm.1 ((𝜑𝑝𝐵) → 𝐹 ∈ (𝑊 MndHom 𝑊))
Assertion
Ref Expression
fxpsubm (𝜑 → (𝐶FixPts𝐴) ∈ (SubMnd‘𝑊))
Distinct variable groups:   𝐴,𝑝,𝑥   𝐵,𝑝,𝑥   𝐶,𝑝,𝑥   𝐺,𝑝,𝑥   𝑊,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑝)

Proof of Theorem fxpsubm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fxpsubm.f . . . . . 6 𝐹 = (𝑥𝐶 ↦ (𝑝𝐴𝑥))
2 oveq1 7359 . . . . . . 7 (𝑝 = (0g𝐺) → (𝑝𝐴𝑥) = ((0g𝐺)𝐴𝑥))
32mpteq2dv 5187 . . . . . 6 (𝑝 = (0g𝐺) → (𝑥𝐶 ↦ (𝑝𝐴𝑥)) = (𝑥𝐶 ↦ ((0g𝐺)𝐴𝑥)))
41, 3eqtrid 2780 . . . . 5 (𝑝 = (0g𝐺) → 𝐹 = (𝑥𝐶 ↦ ((0g𝐺)𝐴𝑥)))
54eleq1d 2818 . . . 4 (𝑝 = (0g𝐺) → (𝐹 ∈ (𝑊 MndHom 𝑊) ↔ (𝑥𝐶 ↦ ((0g𝐺)𝐴𝑥)) ∈ (𝑊 MndHom 𝑊)))
6 fxpsubm.1 . . . . 5 ((𝜑𝑝𝐵) → 𝐹 ∈ (𝑊 MndHom 𝑊))
76ralrimiva 3125 . . . 4 (𝜑 → ∀𝑝𝐵 𝐹 ∈ (𝑊 MndHom 𝑊))
8 fxpsubm.a . . . . . 6 (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
9 gagrp 19206 . . . . . 6 (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐺 ∈ Grp)
108, 9syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
11 fxpsubm.b . . . . . 6 𝐵 = (Base‘𝐺)
12 eqid 2733 . . . . . 6 (0g𝐺) = (0g𝐺)
1311, 12grpidcl 18880 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1410, 13syl 17 . . . 4 (𝜑 → (0g𝐺) ∈ 𝐵)
155, 7, 14rspcdva 3574 . . 3 (𝜑 → (𝑥𝐶 ↦ ((0g𝐺)𝐴𝑥)) ∈ (𝑊 MndHom 𝑊))
16 mhmrcl1 18697 . . 3 ((𝑥𝐶 ↦ ((0g𝐺)𝐴𝑥)) ∈ (𝑊 MndHom 𝑊) → 𝑊 ∈ Mnd)
1715, 16syl 17 . 2 (𝜑𝑊 ∈ Mnd)
18 gaset 19207 . . . 4 (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐶 ∈ V)
198, 18syl 17 . . 3 (𝜑𝐶 ∈ V)
2019, 8fxpss 33142 . 2 (𝜑 → (𝐶FixPts𝐴) ⊆ 𝐶)
21 oveq2 7360 . . . . . 6 (𝑥 = (0g𝑊) → (𝑝𝐴𝑥) = (𝑝𝐴(0g𝑊)))
22 fxpsubm.c . . . . . . . . 9 𝐶 = (Base‘𝑊)
23 eqid 2733 . . . . . . . . 9 (0g𝑊) = (0g𝑊)
2422, 23mndidcl 18659 . . . . . . . 8 (𝑊 ∈ Mnd → (0g𝑊) ∈ 𝐶)
2517, 24syl 17 . . . . . . 7 (𝜑 → (0g𝑊) ∈ 𝐶)
2625adantr 480 . . . . . 6 ((𝜑𝑝𝐵) → (0g𝑊) ∈ 𝐶)
27 ovexd 7387 . . . . . 6 ((𝜑𝑝𝐵) → (𝑝𝐴(0g𝑊)) ∈ V)
281, 21, 26, 27fvmptd3 6958 . . . . 5 ((𝜑𝑝𝐵) → (𝐹‘(0g𝑊)) = (𝑝𝐴(0g𝑊)))
2923, 23mhm0 18704 . . . . . 6 (𝐹 ∈ (𝑊 MndHom 𝑊) → (𝐹‘(0g𝑊)) = (0g𝑊))
306, 29syl 17 . . . . 5 ((𝜑𝑝𝐵) → (𝐹‘(0g𝑊)) = (0g𝑊))
3128, 30eqtr3d 2770 . . . 4 ((𝜑𝑝𝐵) → (𝑝𝐴(0g𝑊)) = (0g𝑊))
3231ralrimiva 3125 . . 3 (𝜑 → ∀𝑝𝐵 (𝑝𝐴(0g𝑊)) = (0g𝑊))
3311, 8, 25isfxp 33144 . . 3 (𝜑 → ((0g𝑊) ∈ (𝐶FixPts𝐴) ↔ ∀𝑝𝐵 (𝑝𝐴(0g𝑊)) = (0g𝑊)))
3432, 33mpbird 257 . 2 (𝜑 → (0g𝑊) ∈ (𝐶FixPts𝐴))
356ad4ant14 752 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → 𝐹 ∈ (𝑊 MndHom 𝑊))
3620ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → (𝐶FixPts𝐴) ⊆ 𝐶)
37 simplr 768 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → 𝑧 ∈ (𝐶FixPts𝐴))
3836, 37sseldd 3931 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → 𝑧𝐶)
3938adantr 480 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → 𝑧𝐶)
4020adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐶FixPts𝐴)) → (𝐶FixPts𝐴) ⊆ 𝐶)
4140sselda 3930 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → 𝑦𝐶)
4241adantr 480 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → 𝑦𝐶)
43 eqid 2733 . . . . . . . . 9 (+g𝑊) = (+g𝑊)
4422, 43, 43mhmlin 18703 . . . . . . . 8 ((𝐹 ∈ (𝑊 MndHom 𝑊) ∧ 𝑧𝐶𝑦𝐶) → (𝐹‘(𝑧(+g𝑊)𝑦)) = ((𝐹𝑧)(+g𝑊)(𝐹𝑦)))
4535, 39, 42, 44syl3anc 1373 . . . . . . 7 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → (𝐹‘(𝑧(+g𝑊)𝑦)) = ((𝐹𝑧)(+g𝑊)(𝐹𝑦)))
46 oveq2 7360 . . . . . . . 8 (𝑥 = (𝑧(+g𝑊)𝑦) → (𝑝𝐴𝑥) = (𝑝𝐴(𝑧(+g𝑊)𝑦)))
4717ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → 𝑊 ∈ Mnd)
4822, 43, 47, 38, 41mndcld 33010 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → (𝑧(+g𝑊)𝑦) ∈ 𝐶)
4948adantr 480 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → (𝑧(+g𝑊)𝑦) ∈ 𝐶)
50 ovexd 7387 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → (𝑝𝐴(𝑧(+g𝑊)𝑦)) ∈ V)
511, 46, 49, 50fvmptd3 6958 . . . . . . 7 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → (𝐹‘(𝑧(+g𝑊)𝑦)) = (𝑝𝐴(𝑧(+g𝑊)𝑦)))
52 oveq2 7360 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑝𝐴𝑥) = (𝑝𝐴𝑧))
53 ovexd 7387 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → (𝑝𝐴𝑧) ∈ V)
541, 52, 39, 53fvmptd3 6958 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → (𝐹𝑧) = (𝑝𝐴𝑧))
558ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → 𝐴 ∈ (𝐺 GrpAct 𝐶))
5655adantr 480 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → 𝐴 ∈ (𝐺 GrpAct 𝐶))
5737adantr 480 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → 𝑧 ∈ (𝐶FixPts𝐴))
58 simpr 484 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → 𝑝𝐵)
5911, 56, 57, 58fxpgaeq 33145 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → (𝑝𝐴𝑧) = 𝑧)
6054, 59eqtrd 2768 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → (𝐹𝑧) = 𝑧)
61 oveq2 7360 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑝𝐴𝑥) = (𝑝𝐴𝑦))
62 ovexd 7387 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → (𝑝𝐴𝑦) ∈ V)
631, 61, 42, 62fvmptd3 6958 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → (𝐹𝑦) = (𝑝𝐴𝑦))
64 simplr 768 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → 𝑦 ∈ (𝐶FixPts𝐴))
6511, 56, 64, 58fxpgaeq 33145 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → (𝑝𝐴𝑦) = 𝑦)
6663, 65eqtrd 2768 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → (𝐹𝑦) = 𝑦)
6760, 66oveq12d 7370 . . . . . . 7 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → ((𝐹𝑧)(+g𝑊)(𝐹𝑦)) = (𝑧(+g𝑊)𝑦))
6845, 51, 673eqtr3d 2776 . . . . . 6 ((((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝𝐵) → (𝑝𝐴(𝑧(+g𝑊)𝑦)) = (𝑧(+g𝑊)𝑦))
6968ralrimiva 3125 . . . . 5 (((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → ∀𝑝𝐵 (𝑝𝐴(𝑧(+g𝑊)𝑦)) = (𝑧(+g𝑊)𝑦))
7011, 55, 48isfxp 33144 . . . . 5 (((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → ((𝑧(+g𝑊)𝑦) ∈ (𝐶FixPts𝐴) ↔ ∀𝑝𝐵 (𝑝𝐴(𝑧(+g𝑊)𝑦)) = (𝑧(+g𝑊)𝑦)))
7169, 70mpbird 257 . . . 4 (((𝜑𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → (𝑧(+g𝑊)𝑦) ∈ (𝐶FixPts𝐴))
7271ralrimiva 3125 . . 3 ((𝜑𝑧 ∈ (𝐶FixPts𝐴)) → ∀𝑦 ∈ (𝐶FixPts𝐴)(𝑧(+g𝑊)𝑦) ∈ (𝐶FixPts𝐴))
7372ralrimiva 3125 . 2 (𝜑 → ∀𝑧 ∈ (𝐶FixPts𝐴)∀𝑦 ∈ (𝐶FixPts𝐴)(𝑧(+g𝑊)𝑦) ∈ (𝐶FixPts𝐴))
7422, 23, 43issubm 18713 . . 3 (𝑊 ∈ Mnd → ((𝐶FixPts𝐴) ∈ (SubMnd‘𝑊) ↔ ((𝐶FixPts𝐴) ⊆ 𝐶 ∧ (0g𝑊) ∈ (𝐶FixPts𝐴) ∧ ∀𝑧 ∈ (𝐶FixPts𝐴)∀𝑦 ∈ (𝐶FixPts𝐴)(𝑧(+g𝑊)𝑦) ∈ (𝐶FixPts𝐴))))
7574biimpar 477 . 2 ((𝑊 ∈ Mnd ∧ ((𝐶FixPts𝐴) ⊆ 𝐶 ∧ (0g𝑊) ∈ (𝐶FixPts𝐴) ∧ ∀𝑧 ∈ (𝐶FixPts𝐴)∀𝑦 ∈ (𝐶FixPts𝐴)(𝑧(+g𝑊)𝑦) ∈ (𝐶FixPts𝐴))) → (𝐶FixPts𝐴) ∈ (SubMnd‘𝑊))
7617, 20, 34, 73, 75syl13anc 1374 1 (𝜑 → (𝐶FixPts𝐴) ∈ (SubMnd‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898  cmpt 5174  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  Mndcmnd 18644   MndHom cmhm 18691  SubMndcsubmnd 18692  Grpcgrp 18848   GrpAct cga 19203  FixPtscfxp 33139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-ga 19204  df-fxp 33140
This theorem is referenced by:  fxpsubg  33149
  Copyright terms: Public domain W3C validator