| Step | Hyp | Ref
| Expression |
| 1 | | fxpsubm.f |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ 𝐶 ↦ (𝑝𝐴𝑥)) |
| 2 | | oveq1 7401 |
. . . . . . 7
⊢ (𝑝 = (0g‘𝐺) → (𝑝𝐴𝑥) = ((0g‘𝐺)𝐴𝑥)) |
| 3 | 2 | mpteq2dv 5209 |
. . . . . 6
⊢ (𝑝 = (0g‘𝐺) → (𝑥 ∈ 𝐶 ↦ (𝑝𝐴𝑥)) = (𝑥 ∈ 𝐶 ↦ ((0g‘𝐺)𝐴𝑥))) |
| 4 | 1, 3 | eqtrid 2777 |
. . . . 5
⊢ (𝑝 = (0g‘𝐺) → 𝐹 = (𝑥 ∈ 𝐶 ↦ ((0g‘𝐺)𝐴𝑥))) |
| 5 | 4 | eleq1d 2814 |
. . . 4
⊢ (𝑝 = (0g‘𝐺) → (𝐹 ∈ (𝑊 MndHom 𝑊) ↔ (𝑥 ∈ 𝐶 ↦ ((0g‘𝐺)𝐴𝑥)) ∈ (𝑊 MndHom 𝑊))) |
| 6 | | fxpsubm.1 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐹 ∈ (𝑊 MndHom 𝑊)) |
| 7 | 6 | ralrimiva 3127 |
. . . 4
⊢ (𝜑 → ∀𝑝 ∈ 𝐵 𝐹 ∈ (𝑊 MndHom 𝑊)) |
| 8 | | fxpsubg.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (𝐺 GrpAct 𝐶)) |
| 9 | | gagrp 19230 |
. . . . . 6
⊢ (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐺 ∈ Grp) |
| 10 | 8, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 11 | | fxpsubm.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
| 12 | | eqid 2730 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 13 | 11, 12 | grpidcl 18903 |
. . . . 5
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
| 14 | 10, 13 | syl 17 |
. . . 4
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐵) |
| 15 | 5, 7, 14 | rspcdva 3598 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ ((0g‘𝐺)𝐴𝑥)) ∈ (𝑊 MndHom 𝑊)) |
| 16 | | mhmrcl1 18720 |
. . 3
⊢ ((𝑥 ∈ 𝐶 ↦ ((0g‘𝐺)𝐴𝑥)) ∈ (𝑊 MndHom 𝑊) → 𝑊 ∈ Mnd) |
| 17 | 15, 16 | syl 17 |
. 2
⊢ (𝜑 → 𝑊 ∈ Mnd) |
| 18 | | gaset 19231 |
. . . 4
⊢ (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐶 ∈ V) |
| 19 | 8, 18 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ∈ V) |
| 20 | 19, 8 | fxpss 33131 |
. 2
⊢ (𝜑 → (𝐶FixPts𝐴) ⊆ 𝐶) |
| 21 | | oveq2 7402 |
. . . . . 6
⊢ (𝑥 = (0g‘𝑊) → (𝑝𝐴𝑥) = (𝑝𝐴(0g‘𝑊))) |
| 22 | | fxpsubg.c |
. . . . . . . . 9
⊢ 𝐶 = (Base‘𝑊) |
| 23 | | eqid 2730 |
. . . . . . . . 9
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 24 | 22, 23 | mndidcl 18682 |
. . . . . . . 8
⊢ (𝑊 ∈ Mnd →
(0g‘𝑊)
∈ 𝐶) |
| 25 | 17, 24 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑊) ∈ 𝐶) |
| 26 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (0g‘𝑊) ∈ 𝐶) |
| 27 | | ovexd 7429 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴(0g‘𝑊)) ∈ V) |
| 28 | 1, 21, 26, 27 | fvmptd3 6998 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝐹‘(0g‘𝑊)) = (𝑝𝐴(0g‘𝑊))) |
| 29 | 23, 23 | mhm0 18727 |
. . . . . 6
⊢ (𝐹 ∈ (𝑊 MndHom 𝑊) → (𝐹‘(0g‘𝑊)) = (0g‘𝑊)) |
| 30 | 6, 29 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝐹‘(0g‘𝑊)) = (0g‘𝑊)) |
| 31 | 28, 30 | eqtr3d 2767 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴(0g‘𝑊)) = (0g‘𝑊)) |
| 32 | 31 | ralrimiva 3127 |
. . 3
⊢ (𝜑 → ∀𝑝 ∈ 𝐵 (𝑝𝐴(0g‘𝑊)) = (0g‘𝑊)) |
| 33 | 11, 8, 25 | isfxp 33133 |
. . 3
⊢ (𝜑 →
((0g‘𝑊)
∈ (𝐶FixPts𝐴) ↔ ∀𝑝 ∈ 𝐵 (𝑝𝐴(0g‘𝑊)) = (0g‘𝑊))) |
| 34 | 32, 33 | mpbird 257 |
. 2
⊢ (𝜑 → (0g‘𝑊) ∈ (𝐶FixPts𝐴)) |
| 35 | 6 | ad4ant14 752 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → 𝐹 ∈ (𝑊 MndHom 𝑊)) |
| 36 | 20 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → (𝐶FixPts𝐴) ⊆ 𝐶) |
| 37 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → 𝑧 ∈ (𝐶FixPts𝐴)) |
| 38 | 36, 37 | sseldd 3955 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → 𝑧 ∈ 𝐶) |
| 39 | 38 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → 𝑧 ∈ 𝐶) |
| 40 | 20 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) → (𝐶FixPts𝐴) ⊆ 𝐶) |
| 41 | 40 | sselda 3954 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → 𝑦 ∈ 𝐶) |
| 42 | 41 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → 𝑦 ∈ 𝐶) |
| 43 | | eqid 2730 |
. . . . . . . . 9
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 44 | 22, 43, 43 | mhmlin 18726 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑊 MndHom 𝑊) ∧ 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝐹‘(𝑧(+g‘𝑊)𝑦)) = ((𝐹‘𝑧)(+g‘𝑊)(𝐹‘𝑦))) |
| 45 | 35, 39, 42, 44 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝐹‘(𝑧(+g‘𝑊)𝑦)) = ((𝐹‘𝑧)(+g‘𝑊)(𝐹‘𝑦))) |
| 46 | | oveq2 7402 |
. . . . . . . 8
⊢ (𝑥 = (𝑧(+g‘𝑊)𝑦) → (𝑝𝐴𝑥) = (𝑝𝐴(𝑧(+g‘𝑊)𝑦))) |
| 47 | 17 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → 𝑊 ∈ Mnd) |
| 48 | 22, 43, 47, 38, 41 | mndcld 32971 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → (𝑧(+g‘𝑊)𝑦) ∈ 𝐶) |
| 49 | 48 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝑧(+g‘𝑊)𝑦) ∈ 𝐶) |
| 50 | | ovexd 7429 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴(𝑧(+g‘𝑊)𝑦)) ∈ V) |
| 51 | 1, 46, 49, 50 | fvmptd3 6998 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝐹‘(𝑧(+g‘𝑊)𝑦)) = (𝑝𝐴(𝑧(+g‘𝑊)𝑦))) |
| 52 | | oveq2 7402 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑝𝐴𝑥) = (𝑝𝐴𝑧)) |
| 53 | | ovexd 7429 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴𝑧) ∈ V) |
| 54 | 1, 52, 39, 53 | fvmptd3 6998 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝐹‘𝑧) = (𝑝𝐴𝑧)) |
| 55 | 8 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → 𝐴 ∈ (𝐺 GrpAct 𝐶)) |
| 56 | 55 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → 𝐴 ∈ (𝐺 GrpAct 𝐶)) |
| 57 | 37 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → 𝑧 ∈ (𝐶FixPts𝐴)) |
| 58 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) |
| 59 | 11, 56, 57, 58 | fxpgaeq 33134 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴𝑧) = 𝑧) |
| 60 | 54, 59 | eqtrd 2765 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝐹‘𝑧) = 𝑧) |
| 61 | | oveq2 7402 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑝𝐴𝑥) = (𝑝𝐴𝑦)) |
| 62 | | ovexd 7429 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴𝑦) ∈ V) |
| 63 | 1, 61, 42, 62 | fvmptd3 6998 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝐹‘𝑦) = (𝑝𝐴𝑦)) |
| 64 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → 𝑦 ∈ (𝐶FixPts𝐴)) |
| 65 | 11, 56, 64, 58 | fxpgaeq 33134 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴𝑦) = 𝑦) |
| 66 | 63, 65 | eqtrd 2765 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝐹‘𝑦) = 𝑦) |
| 67 | 60, 66 | oveq12d 7412 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → ((𝐹‘𝑧)(+g‘𝑊)(𝐹‘𝑦)) = (𝑧(+g‘𝑊)𝑦)) |
| 68 | 45, 51, 67 | 3eqtr3d 2773 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴(𝑧(+g‘𝑊)𝑦)) = (𝑧(+g‘𝑊)𝑦)) |
| 69 | 68 | ralrimiva 3127 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → ∀𝑝 ∈ 𝐵 (𝑝𝐴(𝑧(+g‘𝑊)𝑦)) = (𝑧(+g‘𝑊)𝑦)) |
| 70 | 11, 55, 48 | isfxp 33133 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → ((𝑧(+g‘𝑊)𝑦) ∈ (𝐶FixPts𝐴) ↔ ∀𝑝 ∈ 𝐵 (𝑝𝐴(𝑧(+g‘𝑊)𝑦)) = (𝑧(+g‘𝑊)𝑦))) |
| 71 | 69, 70 | mpbird 257 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑦 ∈ (𝐶FixPts𝐴)) → (𝑧(+g‘𝑊)𝑦) ∈ (𝐶FixPts𝐴)) |
| 72 | 71 | ralrimiva 3127 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) → ∀𝑦 ∈ (𝐶FixPts𝐴)(𝑧(+g‘𝑊)𝑦) ∈ (𝐶FixPts𝐴)) |
| 73 | 72 | ralrimiva 3127 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ (𝐶FixPts𝐴)∀𝑦 ∈ (𝐶FixPts𝐴)(𝑧(+g‘𝑊)𝑦) ∈ (𝐶FixPts𝐴)) |
| 74 | 22, 23, 43 | issubm 18736 |
. . 3
⊢ (𝑊 ∈ Mnd → ((𝐶FixPts𝐴) ∈ (SubMnd‘𝑊) ↔ ((𝐶FixPts𝐴) ⊆ 𝐶 ∧ (0g‘𝑊) ∈ (𝐶FixPts𝐴) ∧ ∀𝑧 ∈ (𝐶FixPts𝐴)∀𝑦 ∈ (𝐶FixPts𝐴)(𝑧(+g‘𝑊)𝑦) ∈ (𝐶FixPts𝐴)))) |
| 75 | 74 | biimpar 477 |
. 2
⊢ ((𝑊 ∈ Mnd ∧ ((𝐶FixPts𝐴) ⊆ 𝐶 ∧ (0g‘𝑊) ∈ (𝐶FixPts𝐴) ∧ ∀𝑧 ∈ (𝐶FixPts𝐴)∀𝑦 ∈ (𝐶FixPts𝐴)(𝑧(+g‘𝑊)𝑦) ∈ (𝐶FixPts𝐴))) → (𝐶FixPts𝐴) ∈ (SubMnd‘𝑊)) |
| 76 | 17, 20, 34, 73, 75 | syl13anc 1374 |
1
⊢ (𝜑 → (𝐶FixPts𝐴) ∈ (SubMnd‘𝑊)) |