MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndprop Structured version   Visualization version   GIF version

Theorem mndprop 18728
Description: If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
Hypotheses
Ref Expression
mndprop.b (Base‘𝐾) = (Base‘𝐿)
mndprop.p (+g𝐾) = (+g𝐿)
Assertion
Ref Expression
mndprop (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)

Proof of Theorem mndprop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2726 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐾))
2 mndprop.b . . . 4 (Base‘𝐾) = (Base‘𝐿)
32a1i 11 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐿))
4 mndprop.p . . . . 5 (+g𝐾) = (+g𝐿)
54oveqi 7432 . . . 4 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦)
65a1i 11 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
71, 3, 6mndpropd 18727 . 2 (⊤ → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
87mptru 1540 1 (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wtru 1534  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17188  +gcplusg 17241  Mndcmnd 18702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-ov 7422  df-mgm 18608  df-sgrp 18687  df-mnd 18703
This theorem is referenced by:  ring1  20263
  Copyright terms: Public domain W3C validator