![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndprop | Structured version Visualization version GIF version |
Description: If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) |
Ref | Expression |
---|---|
mndprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
mndprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
Ref | Expression |
---|---|
mndprop | ⊢ (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2727 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐾)) | |
2 | mndprop.b | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐿)) |
4 | mndprop.p | . . . . 5 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
5 | 4 | oveqi 7417 | . . . 4 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
6 | 5 | a1i 11 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
7 | 1, 3, 6 | mndpropd 18690 | . 2 ⊢ (⊤ → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) |
8 | 7 | mptru 1540 | 1 ⊢ (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 ‘cfv 6536 (class class class)co 7404 Basecbs 17151 +gcplusg 17204 Mndcmnd 18665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6488 df-fv 6544 df-ov 7407 df-mgm 18571 df-sgrp 18650 df-mnd 18666 |
This theorem is referenced by: ring1 20207 |
Copyright terms: Public domain | W3C validator |