| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndprop | Structured version Visualization version GIF version | ||
| Description: If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| mndprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
| mndprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
| Ref | Expression |
|---|---|
| mndprop | ⊢ (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐾)) | |
| 2 | mndprop.b | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐿)) |
| 4 | mndprop.p | . . . . 5 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
| 5 | 4 | oveqi 7354 | . . . 4 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
| 6 | 5 | a1i 11 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 7 | 1, 3, 6 | mndpropd 18662 | . 2 ⊢ (⊤ → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) |
| 8 | 7 | mptru 1548 | 1 ⊢ (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 Mndcmnd 18637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-mgm 18543 df-sgrp 18622 df-mnd 18638 |
| This theorem is referenced by: ring1 20223 opprmndb 42544 |
| Copyright terms: Public domain | W3C validator |