| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndprop | Structured version Visualization version GIF version | ||
| Description: If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| mndprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
| mndprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
| Ref | Expression |
|---|---|
| mndprop | ⊢ (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐾)) | |
| 2 | mndprop.b | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐿)) |
| 4 | mndprop.p | . . . . 5 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
| 5 | 4 | oveqi 7400 | . . . 4 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
| 6 | 5 | a1i 11 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 7 | 1, 3, 6 | mndpropd 18686 | . 2 ⊢ (⊤ → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) |
| 8 | 7 | mptru 1547 | 1 ⊢ (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Mndcmnd 18661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-mgm 18567 df-sgrp 18646 df-mnd 18662 |
| This theorem is referenced by: ring1 20219 opprmndb 42499 |
| Copyright terms: Public domain | W3C validator |