MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndprop Structured version   Visualization version   GIF version

Theorem mndprop 18743
Description: If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
Hypotheses
Ref Expression
mndprop.b (Base‘𝐾) = (Base‘𝐿)
mndprop.p (+g𝐾) = (+g𝐿)
Assertion
Ref Expression
mndprop (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)

Proof of Theorem mndprop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐾))
2 mndprop.b . . . 4 (Base‘𝐾) = (Base‘𝐿)
32a1i 11 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐿))
4 mndprop.p . . . . 5 (+g𝐾) = (+g𝐿)
54oveqi 7423 . . . 4 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦)
65a1i 11 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
71, 3, 6mndpropd 18742 . 2 (⊤ → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
87mptru 1547 1 (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Mndcmnd 18717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-mgm 18623  df-sgrp 18702  df-mnd 18718
This theorem is referenced by:  ring1  20275  opprmndb  42501
  Copyright terms: Public domain W3C validator