MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndpropd Structured version   Visualization version   GIF version

Theorem mndpropd 17939
Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
mndpropd.1 (𝜑𝐵 = (Base‘𝐾))
mndpropd.2 (𝜑𝐵 = (Base‘𝐿))
mndpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
mndpropd (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem mndpropd
Dummy variables 𝑢 𝑠 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . . . 6 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝐾 ∈ Mnd)
2 simprl 769 . . . . . . 7 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
3 mndpropd.1 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐾))
43ad2antrr 724 . . . . . . 7 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝐵 = (Base‘𝐾))
52, 4eleqtrd 2918 . . . . . 6 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ (Base‘𝐾))
6 simprr 771 . . . . . . 7 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
76, 4eleqtrd 2918 . . . . . 6 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘𝐾))
8 eqid 2824 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
9 eqid 2824 . . . . . . 7 (+g𝐾) = (+g𝐾)
108, 9mndcl 17922 . . . . . 6 ((𝐾 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))
111, 5, 7, 10syl3anc 1367 . . . . 5 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))
1211, 4eleqtrrd 2919 . . . 4 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) ∈ 𝐵)
1312ralrimivva 3194 . . 3 ((𝜑𝐾 ∈ Mnd) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵)
1413ex 415 . 2 (𝜑 → (𝐾 ∈ Mnd → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵))
15 simplr 767 . . . . . 6 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝐿 ∈ Mnd)
16 simprl 769 . . . . . . 7 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
17 mndpropd.2 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐿))
1817ad2antrr 724 . . . . . . 7 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝐵 = (Base‘𝐿))
1916, 18eleqtrd 2918 . . . . . 6 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ (Base‘𝐿))
20 simprr 771 . . . . . . 7 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
2120, 18eleqtrd 2918 . . . . . 6 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘𝐿))
22 eqid 2824 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
23 eqid 2824 . . . . . . 7 (+g𝐿) = (+g𝐿)
2422, 23mndcl 17922 . . . . . 6 ((𝐿 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐿) ∧ 𝑦 ∈ (Base‘𝐿)) → (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))
2515, 19, 21, 24syl3anc 1367 . . . . 5 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))
26 mndpropd.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2726adantlr 713 . . . . 5 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2825, 27, 183eltr4d 2931 . . . 4 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) ∈ 𝐵)
2928ralrimivva 3194 . . 3 ((𝜑𝐿 ∈ Mnd) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵)
3029ex 415 . 2 (𝜑 → (𝐿 ∈ Mnd → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵))
3126oveqrspc2v 7186 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
3231adantlr 713 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
3332eleq1d 2900 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) → ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ↔ (𝑢(+g𝐿)𝑣) ∈ 𝐵))
34 simplll 773 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → 𝜑)
35 simplrl 775 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → 𝑢𝐵)
36 simplrr 776 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → 𝑣𝐵)
37 simpllr 774 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵)
38 ovrspc2v 7185 . . . . . . . . . . . . 13 (((𝑢𝐵𝑣𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (𝑢(+g𝐾)𝑣) ∈ 𝐵)
3935, 36, 37, 38syl21anc 835 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐾)𝑣) ∈ 𝐵)
40 simpr 487 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → 𝑤𝐵)
4126oveqrspc2v 7186 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑢(+g𝐾)𝑣) ∈ 𝐵𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(+g𝐿)𝑤))
4234, 39, 40, 41syl12anc 834 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(+g𝐿)𝑤))
4334, 35, 36, 31syl12anc 834 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
4443oveq1d 7174 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → ((𝑢(+g𝐾)𝑣)(+g𝐿)𝑤) = ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤))
4542, 44eqtrd 2859 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤))
46 ovrspc2v 7185 . . . . . . . . . . . . 13 (((𝑣𝐵𝑤𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (𝑣(+g𝐾)𝑤) ∈ 𝐵)
4736, 40, 37, 46syl21anc 835 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑣(+g𝐾)𝑤) ∈ 𝐵)
4826oveqrspc2v 7186 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝐵 ∧ (𝑣(+g𝐾)𝑤) ∈ 𝐵)) → (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(+g𝐿)(𝑣(+g𝐾)𝑤)))
4934, 35, 47, 48syl12anc 834 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(+g𝐿)(𝑣(+g𝐾)𝑤)))
5026oveqrspc2v 7186 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑣𝐵𝑤𝐵)) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
5134, 36, 40, 50syl12anc 834 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
5251oveq2d 7175 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐿)(𝑣(+g𝐾)𝑤)) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))
5349, 52eqtrd 2859 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))
5445, 53eqeq12d 2840 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) ↔ ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))))
5554ralbidva 3199 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) → (∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) ↔ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))))
5633, 55anbi12d 632 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) → (((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
57562ralbidva 3201 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢𝐵𝑣𝐵 ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ∀𝑢𝐵𝑣𝐵 ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
583adantr 483 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → 𝐵 = (Base‘𝐾))
5958eleq2d 2901 . . . . . . . . 9 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ↔ (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾)))
6058raleqdv 3418 . . . . . . . . 9 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))))
6159, 60anbi12d 632 . . . . . . . 8 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)))))
6258, 61raleqbidv 3404 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑣𝐵 ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)))))
6358, 62raleqbidv 3404 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢𝐵𝑣𝐵 ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)))))
6417adantr 483 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → 𝐵 = (Base‘𝐿))
6564eleq2d 2901 . . . . . . . . 9 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ↔ (𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿)))
6664raleqdv 3418 . . . . . . . . 9 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))))
6765, 66anbi12d 632 . . . . . . . 8 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ↔ ((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
6864, 67raleqbidv 3404 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑣𝐵 ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
6964, 68raleqbidv 3404 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢𝐵𝑣𝐵 ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
7057, 63, 693bitr3d 311 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
71 simplll 773 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → 𝜑)
72 simplr 767 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → 𝑠𝐵)
73 simpr 487 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → 𝑢𝐵)
7426oveqrspc2v 7186 . . . . . . . . . . 11 ((𝜑 ∧ (𝑠𝐵𝑢𝐵)) → (𝑠(+g𝐾)𝑢) = (𝑠(+g𝐿)𝑢))
7571, 72, 73, 74syl12anc 834 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → (𝑠(+g𝐾)𝑢) = (𝑠(+g𝐿)𝑢))
7675eqeq1d 2826 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → ((𝑠(+g𝐾)𝑢) = 𝑢 ↔ (𝑠(+g𝐿)𝑢) = 𝑢))
7726oveqrspc2v 7186 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝐵𝑠𝐵)) → (𝑢(+g𝐾)𝑠) = (𝑢(+g𝐿)𝑠))
7871, 73, 72, 77syl12anc 834 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → (𝑢(+g𝐾)𝑠) = (𝑢(+g𝐿)𝑠))
7978eqeq1d 2826 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → ((𝑢(+g𝐾)𝑠) = 𝑢 ↔ (𝑢(+g𝐿)𝑠) = 𝑢))
8076, 79anbi12d 632 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → (((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢) ↔ ((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
8180ralbidva 3199 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) → (∀𝑢𝐵 ((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢) ↔ ∀𝑢𝐵 ((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
8281rexbidva 3299 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∃𝑠𝐵𝑢𝐵 ((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢) ↔ ∃𝑠𝐵𝑢𝐵 ((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
8358raleqdv 3418 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢𝐵 ((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢) ↔ ∀𝑢 ∈ (Base‘𝐾)((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢)))
8458, 83rexeqbidv 3405 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∃𝑠𝐵𝑢𝐵 ((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢) ↔ ∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢)))
8564raleqdv 3418 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢𝐵 ((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
8664, 85rexeqbidv 3405 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∃𝑠𝐵𝑢𝐵 ((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢) ↔ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
8782, 84, 863bitr3d 311 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢) ↔ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
8870, 87anbi12d 632 . . . 4 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → ((∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢)) ↔ (∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢))))
898, 9ismnd 17917 . . . 4 (𝐾 ∈ Mnd ↔ (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢)))
9022, 23ismnd 17917 . . . 4 (𝐿 ∈ Mnd ↔ (∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
9188, 89, 903bitr4g 316 . . 3 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
9291ex 415 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)))
9314, 30, 92pm5.21ndd 383 1 (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  wrex 3142  cfv 6358  (class class class)co 7159  Basecbs 16486  +gcplusg 16568  Mndcmnd 17914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-nul 5213  ax-pow 5269
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-iota 6317  df-fv 6366  df-ov 7162  df-mgm 17855  df-sgrp 17904  df-mnd 17915
This theorem is referenced by:  mndprop  17940  mhmpropd  17965  grppropd  18121  oppgmndb  18486  cmnpropd  18919  ringpropd  19335  prdsringd  19365
  Copyright terms: Public domain W3C validator