| Step | Hyp | Ref
| Expression |
| 1 | | simplr 769 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐾 ∈ Mnd) |
| 2 | | simprl 771 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 3 | | mndpropd.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| 4 | 3 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐵 = (Base‘𝐾)) |
| 5 | 2, 4 | eleqtrd 2843 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝐾)) |
| 6 | | simprr 773 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 7 | 6, 4 | eleqtrd 2843 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ (Base‘𝐾)) |
| 8 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 9 | | eqid 2737 |
. . . . . . 7
⊢
(+g‘𝐾) = (+g‘𝐾) |
| 10 | 8, 9 | mndcl 18755 |
. . . . . 6
⊢ ((𝐾 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾)) |
| 11 | 1, 5, 7, 10 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾)) |
| 12 | 11, 4 | eleqtrrd 2844 |
. . . 4
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) |
| 13 | 12 | ralrimivva 3202 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ Mnd) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) |
| 14 | 13 | ex 412 |
. 2
⊢ (𝜑 → (𝐾 ∈ Mnd → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵)) |
| 15 | | simplr 769 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐿 ∈ Mnd) |
| 16 | | simprl 771 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 17 | | mndpropd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| 18 | 17 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐵 = (Base‘𝐿)) |
| 19 | 16, 18 | eleqtrd 2843 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝐿)) |
| 20 | | simprr 773 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 21 | 20, 18 | eleqtrd 2843 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ (Base‘𝐿)) |
| 22 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐿) =
(Base‘𝐿) |
| 23 | | eqid 2737 |
. . . . . . 7
⊢
(+g‘𝐿) = (+g‘𝐿) |
| 24 | 22, 23 | mndcl 18755 |
. . . . . 6
⊢ ((𝐿 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐿) ∧ 𝑦 ∈ (Base‘𝐿)) → (𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿)) |
| 25 | 15, 19, 21, 24 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿)) |
| 26 | | mndpropd.3 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 27 | 26 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 28 | 25, 27, 18 | 3eltr4d 2856 |
. . . 4
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) |
| 29 | 28 | ralrimivva 3202 |
. . 3
⊢ ((𝜑 ∧ 𝐿 ∈ Mnd) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) |
| 30 | 29 | ex 412 |
. 2
⊢ (𝜑 → (𝐿 ∈ Mnd → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵)) |
| 31 | 26 | oveqrspc2v 7458 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
| 32 | 31 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
| 33 | 32 | eleq1d 2826 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ↔ (𝑢(+g‘𝐿)𝑣) ∈ 𝐵)) |
| 34 | | simplll 775 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → 𝜑) |
| 35 | | simplrl 777 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → 𝑢 ∈ 𝐵) |
| 36 | | simplrr 778 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → 𝑣 ∈ 𝐵) |
| 37 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) |
| 38 | | ovrspc2v 7457 |
. . . . . . . . . . . . 13
⊢ (((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (𝑢(+g‘𝐾)𝑣) ∈ 𝐵) |
| 39 | 35, 36, 37, 38 | syl21anc 838 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐾)𝑣) ∈ 𝐵) |
| 40 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → 𝑤 ∈ 𝐵) |
| 41 | 26 | oveqrspc2v 7458 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(+g‘𝐿)𝑤)) |
| 42 | 34, 39, 40, 41 | syl12anc 837 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(+g‘𝐿)𝑤)) |
| 43 | 34, 35, 36, 31 | syl12anc 837 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
| 44 | 43 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑣)(+g‘𝐿)𝑤) = ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤)) |
| 45 | 42, 44 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤)) |
| 46 | | ovrspc2v 7457 |
. . . . . . . . . . . . 13
⊢ (((𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (𝑣(+g‘𝐾)𝑤) ∈ 𝐵) |
| 47 | 36, 40, 37, 46 | syl21anc 838 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑣(+g‘𝐾)𝑤) ∈ 𝐵) |
| 48 | 26 | oveqrspc2v 7458 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ (𝑣(+g‘𝐾)𝑤) ∈ 𝐵)) → (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐾)𝑤))) |
| 49 | 34, 35, 47, 48 | syl12anc 837 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐾)𝑤))) |
| 50 | 26 | oveqrspc2v 7458 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) |
| 51 | 34, 36, 40, 50 | syl12anc 837 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) |
| 52 | 51 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐿)(𝑣(+g‘𝐾)𝑤)) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) |
| 53 | 49, 52 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) |
| 54 | 45, 53 | eqeq12d 2753 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) ↔ ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤)))) |
| 55 | 54 | ralbidva 3176 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) ↔ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤)))) |
| 56 | 33, 55 | anbi12d 632 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) |
| 57 | 56 | 2ralbidva 3219 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) |
| 58 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → 𝐵 = (Base‘𝐾)) |
| 59 | 58 | eleq2d 2827 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ↔ (𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾))) |
| 60 | 58 | raleqdv 3326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)))) |
| 61 | 59, 60 | anbi12d 632 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))))) |
| 62 | 58, 61 | raleqbidv 3346 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))))) |
| 63 | 58, 62 | raleqbidv 3346 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))))) |
| 64 | 17 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → 𝐵 = (Base‘𝐿)) |
| 65 | 64 | eleq2d 2827 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ↔ (𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿))) |
| 66 | 64 | raleqdv 3326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤)))) |
| 67 | 65, 66 | anbi12d 632 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ↔ ((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) |
| 68 | 64, 67 | raleqbidv 3346 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) |
| 69 | 64, 68 | raleqbidv 3346 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) |
| 70 | 57, 63, 69 | 3bitr3d 309 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) |
| 71 | | simplll 775 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝜑) |
| 72 | | simplr 769 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑠 ∈ 𝐵) |
| 73 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ 𝐵) |
| 74 | 26 | oveqrspc2v 7458 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵)) → (𝑠(+g‘𝐾)𝑢) = (𝑠(+g‘𝐿)𝑢)) |
| 75 | 71, 72, 73, 74 | syl12anc 837 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → (𝑠(+g‘𝐾)𝑢) = (𝑠(+g‘𝐿)𝑢)) |
| 76 | 75 | eqeq1d 2739 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ((𝑠(+g‘𝐾)𝑢) = 𝑢 ↔ (𝑠(+g‘𝐿)𝑢) = 𝑢)) |
| 77 | 26 | oveqrspc2v 7458 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑠 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑠) = (𝑢(+g‘𝐿)𝑠)) |
| 78 | 71, 73, 72, 77 | syl12anc 837 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → (𝑢(+g‘𝐾)𝑠) = (𝑢(+g‘𝐿)𝑠)) |
| 79 | 78 | eqeq1d 2739 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑠) = 𝑢 ↔ (𝑢(+g‘𝐿)𝑠) = 𝑢)) |
| 80 | 76, 79 | anbi12d 632 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → (((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢) ↔ ((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
| 81 | 80 | ralbidva 3176 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢) ↔ ∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
| 82 | 81 | rexbidva 3177 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∃𝑠 ∈ 𝐵 ∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢) ↔ ∃𝑠 ∈ 𝐵 ∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
| 83 | 58 | raleqdv 3326 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢) ↔ ∀𝑢 ∈ (Base‘𝐾)((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢))) |
| 84 | 58, 83 | rexeqbidv 3347 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∃𝑠 ∈ 𝐵 ∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢) ↔ ∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢))) |
| 85 | 64 | raleqdv 3326 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
| 86 | 64, 85 | rexeqbidv 3347 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∃𝑠 ∈ 𝐵 ∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢) ↔ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
| 87 | 82, 84, 86 | 3bitr3d 309 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢) ↔ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
| 88 | 70, 87 | anbi12d 632 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → ((∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢)) ↔ (∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢)))) |
| 89 | 8, 9 | ismnd 18750 |
. . . 4
⊢ (𝐾 ∈ Mnd ↔
(∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢))) |
| 90 | 22, 23 | ismnd 18750 |
. . . 4
⊢ (𝐿 ∈ Mnd ↔
(∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
| 91 | 88, 89, 90 | 3bitr4g 314 |
. . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) |
| 92 | 91 | ex 412 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))) |
| 93 | 14, 30, 92 | pm5.21ndd 379 |
1
⊢ (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) |