Step | Hyp | Ref
| Expression |
1 | | simplr 767 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐾 ∈ Mnd) |
2 | | simprl 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
3 | | mndpropd.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
4 | 3 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐵 = (Base‘𝐾)) |
5 | 2, 4 | eleqtrd 2839 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝐾)) |
6 | | simprr 771 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
7 | 6, 4 | eleqtrd 2839 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ (Base‘𝐾)) |
8 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
9 | | eqid 2736 |
. . . . . . 7
⊢
(+g‘𝐾) = (+g‘𝐾) |
10 | 8, 9 | mndcl 18438 |
. . . . . 6
⊢ ((𝐾 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾)) |
11 | 1, 5, 7, 10 | syl3anc 1371 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾)) |
12 | 11, 4 | eleqtrrd 2840 |
. . . 4
⊢ (((𝜑 ∧ 𝐾 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) |
13 | 12 | ralrimivva 3194 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ Mnd) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) |
14 | 13 | ex 414 |
. 2
⊢ (𝜑 → (𝐾 ∈ Mnd → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵)) |
15 | | simplr 767 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐿 ∈ Mnd) |
16 | | simprl 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
17 | | mndpropd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
18 | 17 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐵 = (Base‘𝐿)) |
19 | 16, 18 | eleqtrd 2839 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝐿)) |
20 | | simprr 771 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
21 | 20, 18 | eleqtrd 2839 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ (Base‘𝐿)) |
22 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝐿) =
(Base‘𝐿) |
23 | | eqid 2736 |
. . . . . . 7
⊢
(+g‘𝐿) = (+g‘𝐿) |
24 | 22, 23 | mndcl 18438 |
. . . . . 6
⊢ ((𝐿 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐿) ∧ 𝑦 ∈ (Base‘𝐿)) → (𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿)) |
25 | 15, 19, 21, 24 | syl3anc 1371 |
. . . . 5
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿)) |
26 | | mndpropd.3 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
27 | 26 | adantlr 713 |
. . . . 5
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
28 | 25, 27, 18 | 3eltr4d 2852 |
. . . 4
⊢ (((𝜑 ∧ 𝐿 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) |
29 | 28 | ralrimivva 3194 |
. . 3
⊢ ((𝜑 ∧ 𝐿 ∈ Mnd) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) |
30 | 29 | ex 414 |
. 2
⊢ (𝜑 → (𝐿 ∈ Mnd → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵)) |
31 | 26 | oveqrspc2v 7334 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
32 | 31 | adantlr 713 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
33 | 32 | eleq1d 2821 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ↔ (𝑢(+g‘𝐿)𝑣) ∈ 𝐵)) |
34 | | simplll 773 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → 𝜑) |
35 | | simplrl 775 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → 𝑢 ∈ 𝐵) |
36 | | simplrr 776 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → 𝑣 ∈ 𝐵) |
37 | | simpllr 774 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) |
38 | | ovrspc2v 7333 |
. . . . . . . . . . . . 13
⊢ (((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (𝑢(+g‘𝐾)𝑣) ∈ 𝐵) |
39 | 35, 36, 37, 38 | syl21anc 836 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐾)𝑣) ∈ 𝐵) |
40 | | simpr 486 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → 𝑤 ∈ 𝐵) |
41 | 26 | oveqrspc2v 7334 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(+g‘𝐿)𝑤)) |
42 | 34, 39, 40, 41 | syl12anc 835 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(+g‘𝐿)𝑤)) |
43 | 34, 35, 36, 31 | syl12anc 835 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
44 | 43 | oveq1d 7322 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑣)(+g‘𝐿)𝑤) = ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤)) |
45 | 42, 44 | eqtrd 2776 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤)) |
46 | | ovrspc2v 7333 |
. . . . . . . . . . . . 13
⊢ (((𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (𝑣(+g‘𝐾)𝑤) ∈ 𝐵) |
47 | 36, 40, 37, 46 | syl21anc 836 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑣(+g‘𝐾)𝑤) ∈ 𝐵) |
48 | 26 | oveqrspc2v 7334 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ (𝑣(+g‘𝐾)𝑤) ∈ 𝐵)) → (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐾)𝑤))) |
49 | 34, 35, 47, 48 | syl12anc 835 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐾)𝑤))) |
50 | 26 | oveqrspc2v 7334 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) |
51 | 34, 36, 40, 50 | syl12anc 835 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) |
52 | 51 | oveq2d 7323 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐿)(𝑣(+g‘𝐾)𝑤)) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) |
53 | 49, 52 | eqtrd 2776 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) |
54 | 45, 53 | eqeq12d 2752 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) ↔ ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤)))) |
55 | 54 | ralbidva 3169 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) ↔ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤)))) |
56 | 33, 55 | anbi12d 632 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) |
57 | 56 | 2ralbidva 3207 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) |
58 | 3 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → 𝐵 = (Base‘𝐾)) |
59 | 58 | eleq2d 2822 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ↔ (𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾))) |
60 | 58 | raleqdv 3360 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)))) |
61 | 59, 60 | anbi12d 632 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))))) |
62 | 58, 61 | raleqbidv 3348 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))))) |
63 | 58, 62 | raleqbidv 3348 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))))) |
64 | 17 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → 𝐵 = (Base‘𝐿)) |
65 | 64 | eleq2d 2822 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ↔ (𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿))) |
66 | 64 | raleqdv 3360 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤)))) |
67 | 65, 66 | anbi12d 632 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ↔ ((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) |
68 | 64, 67 | raleqbidv 3348 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) |
69 | 64, 68 | raleqbidv 3348 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) |
70 | 57, 63, 69 | 3bitr3d 309 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) |
71 | | simplll 773 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝜑) |
72 | | simplr 767 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑠 ∈ 𝐵) |
73 | | simpr 486 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ 𝐵) |
74 | 26 | oveqrspc2v 7334 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵)) → (𝑠(+g‘𝐾)𝑢) = (𝑠(+g‘𝐿)𝑢)) |
75 | 71, 72, 73, 74 | syl12anc 835 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → (𝑠(+g‘𝐾)𝑢) = (𝑠(+g‘𝐿)𝑢)) |
76 | 75 | eqeq1d 2738 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ((𝑠(+g‘𝐾)𝑢) = 𝑢 ↔ (𝑠(+g‘𝐿)𝑢) = 𝑢)) |
77 | 26 | oveqrspc2v 7334 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑠 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑠) = (𝑢(+g‘𝐿)𝑠)) |
78 | 71, 73, 72, 77 | syl12anc 835 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → (𝑢(+g‘𝐾)𝑠) = (𝑢(+g‘𝐿)𝑠)) |
79 | 78 | eqeq1d 2738 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑠) = 𝑢 ↔ (𝑢(+g‘𝐿)𝑠) = 𝑢)) |
80 | 76, 79 | anbi12d 632 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → (((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢) ↔ ((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
81 | 80 | ralbidva 3169 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ 𝑠 ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢) ↔ ∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
82 | 81 | rexbidva 3170 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∃𝑠 ∈ 𝐵 ∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢) ↔ ∃𝑠 ∈ 𝐵 ∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
83 | 58 | raleqdv 3360 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢) ↔ ∀𝑢 ∈ (Base‘𝐾)((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢))) |
84 | 58, 83 | rexeqbidv 3349 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∃𝑠 ∈ 𝐵 ∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢) ↔ ∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢))) |
85 | 64 | raleqdv 3360 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
86 | 64, 85 | rexeqbidv 3349 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∃𝑠 ∈ 𝐵 ∀𝑢 ∈ 𝐵 ((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢) ↔ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
87 | 82, 84, 86 | 3bitr3d 309 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢) ↔ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
88 | 70, 87 | anbi12d 632 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → ((∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢)) ↔ (∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢)))) |
89 | 8, 9 | ismnd 18433 |
. . . 4
⊢ (𝐾 ∈ Mnd ↔
(∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g‘𝐾)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐾)𝑠) = 𝑢))) |
90 | 22, 23 | ismnd 18433 |
. . . 4
⊢ (𝐿 ∈ Mnd ↔
(∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g‘𝐿)𝑢) = 𝑢 ∧ (𝑢(+g‘𝐿)𝑠) = 𝑢))) |
91 | 88, 89, 90 | 3bitr4g 314 |
. . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) |
92 | 91 | ex 414 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))) |
93 | 14, 30, 92 | pm5.21ndd 381 |
1
⊢ (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) |