MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ring1 Structured version   Visualization version   GIF version

Theorem ring1 19756
Description: The (smallest) structure representing a zero ring. (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
ring1.m 𝑀 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
Assertion
Ref Expression
ring1 (𝑍𝑉𝑀 ∈ Ring)

Proof of Theorem ring1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
21grp1 18597 . . 3 (𝑍𝑉 → {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ Grp)
3 snex 5349 . . . . . 6 {𝑍} ∈ V
4 ring1.m . . . . . . 7 𝑀 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
54rngbase 16935 . . . . . 6 ({𝑍} ∈ V → {𝑍} = (Base‘𝑀))
63, 5ax-mp 5 . . . . 5 {𝑍} = (Base‘𝑀)
76eqcomi 2747 . . . 4 (Base‘𝑀) = {𝑍}
8 snex 5349 . . . . 5 {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V
94rngplusg 16936 . . . . . 6 ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V → {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (+g𝑀))
109eqcomd 2744 . . . . 5 ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V → (+g𝑀) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})
118, 10ax-mp 5 . . . 4 (+g𝑀) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}
127, 11, 1grppropstr 18511 . . 3 (𝑀 ∈ Grp ↔ {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ Grp)
132, 12sylibr 233 . 2 (𝑍𝑉𝑀 ∈ Grp)
141mnd1 18341 . . 3 (𝑍𝑉 → {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ Mnd)
15 eqid 2738 . . . . . 6 (mulGrp‘𝑀) = (mulGrp‘𝑀)
1615, 6mgpbas 19641 . . . . 5 {𝑍} = (Base‘(mulGrp‘𝑀))
171grpbase 16922 . . . . . 6 ({𝑍} ∈ V → {𝑍} = (Base‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}))
183, 17ax-mp 5 . . . . 5 {𝑍} = (Base‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩})
1916, 18eqtr3i 2768 . . . 4 (Base‘(mulGrp‘𝑀)) = (Base‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩})
204rngmulr 16937 . . . . . 6 ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V → {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (.r𝑀))
218, 20ax-mp 5 . . . . 5 {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (.r𝑀)
221grpplusg 16924 . . . . . 6 ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V → {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (+g‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}))
238, 22ax-mp 5 . . . . 5 {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (+g‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩})
24 eqid 2738 . . . . . 6 (.r𝑀) = (.r𝑀)
2515, 24mgpplusg 19639 . . . . 5 (.r𝑀) = (+g‘(mulGrp‘𝑀))
2621, 23, 253eqtr3ri 2775 . . . 4 (+g‘(mulGrp‘𝑀)) = (+g‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩})
2719, 26mndprop 18326 . . 3 ((mulGrp‘𝑀) ∈ Mnd ↔ {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ Mnd)
2814, 27sylibr 233 . 2 (𝑍𝑉 → (mulGrp‘𝑀) ∈ Mnd)
29 df-ov 7258 . . . . . 6 (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩}‘⟨𝑍, 𝑍⟩)
30 opex 5373 . . . . . . 7 𝑍, 𝑍⟩ ∈ V
31 fvsng 7034 . . . . . . 7 ((⟨𝑍, 𝑍⟩ ∈ V ∧ 𝑍𝑉) → ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩}‘⟨𝑍, 𝑍⟩) = 𝑍)
3230, 31mpan 686 . . . . . 6 (𝑍𝑉 → ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩}‘⟨𝑍, 𝑍⟩) = 𝑍)
3329, 32eqtrid 2790 . . . . 5 (𝑍𝑉 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = 𝑍)
3433oveq2d 7271 . . . 4 (𝑍𝑉 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
3533, 33oveq12d 7273 . . . 4 (𝑍𝑉 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
3634, 35eqtr4d 2781 . . 3 (𝑍𝑉 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
3733oveq1d 7270 . . . 4 (𝑍𝑉 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
3837, 35eqtr4d 2781 . . 3 (𝑍𝑉 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
39 oveq1 7262 . . . . . . . 8 (𝑎 = 𝑍 → (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
40 oveq1 7262 . . . . . . . . 9 (𝑎 = 𝑍 → (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏))
41 oveq1 7262 . . . . . . . . 9 (𝑎 = 𝑍 → (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))
4240, 41oveq12d 7273 . . . . . . . 8 (𝑎 = 𝑍 → ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
4339, 42eqeq12d 2754 . . . . . . 7 (𝑎 = 𝑍 → ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
4440oveq1d 7270 . . . . . . . 8 (𝑎 = 𝑍 → ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))
4541oveq1d 7270 . . . . . . . 8 (𝑎 = 𝑍 → ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
4644, 45eqeq12d 2754 . . . . . . 7 (𝑎 = 𝑍 → (((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
4743, 46anbi12d 630 . . . . . 6 (𝑎 = 𝑍 → (((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
48472ralbidv 3122 . . . . 5 (𝑎 = 𝑍 → (∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
4948ralsng 4606 . . . 4 (𝑍𝑉 → (∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
50 oveq1 7262 . . . . . . . . 9 (𝑏 = 𝑍 → (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))
5150oveq2d 7271 . . . . . . . 8 (𝑏 = 𝑍 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
52 oveq2 7263 . . . . . . . . 9 (𝑏 = 𝑍 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
5352oveq1d 7270 . . . . . . . 8 (𝑏 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
5451, 53eqeq12d 2754 . . . . . . 7 (𝑏 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
5552oveq1d 7270 . . . . . . . 8 (𝑏 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))
5650oveq2d 7271 . . . . . . . 8 (𝑏 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
5755, 56eqeq12d 2754 . . . . . . 7 (𝑏 = 𝑍 → (((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
5854, 57anbi12d 630 . . . . . 6 (𝑏 = 𝑍 → (((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
5958ralbidv 3120 . . . . 5 (𝑏 = 𝑍 → (∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
6059ralsng 4606 . . . 4 (𝑍𝑉 → (∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
61 oveq2 7263 . . . . . . . 8 (𝑐 = 𝑍 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
6261oveq2d 7271 . . . . . . 7 (𝑐 = 𝑍 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
6361oveq2d 7271 . . . . . . 7 (𝑐 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
6462, 63eqeq12d 2754 . . . . . 6 (𝑐 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))))
65 oveq2 7263 . . . . . . 7 (𝑐 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
6661, 61oveq12d 7273 . . . . . . 7 (𝑐 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
6765, 66eqeq12d 2754 . . . . . 6 (𝑐 = 𝑍 → (((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))))
6864, 67anbi12d 630 . . . . 5 (𝑐 = 𝑍 → (((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))))
6968ralsng 4606 . . . 4 (𝑍𝑉 → (∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))))
7049, 60, 693bitrd 304 . . 3 (𝑍𝑉 → (∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))))
7136, 38, 70mpbir2and 709 . 2 (𝑍𝑉 → ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
728, 9ax-mp 5 . . 3 {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (+g𝑀)
736, 15, 72, 21isring 19702 . 2 (𝑀 ∈ Ring ↔ (𝑀 ∈ Grp ∧ (mulGrp‘𝑀) ∈ Mnd ∧ ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
7413, 28, 71, 73syl3anbrc 1341 1 (𝑍𝑉𝑀 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  {csn 4558  {cpr 4560  {ctp 4562  cop 4564  cfv 6418  (class class class)co 7255  ndxcnx 16822  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Mndcmnd 18300  Grpcgrp 18492  mulGrpcmgp 19635  Ringcrg 19698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mgp 19636  df-ring 19700
This theorem is referenced by:  ringn0  19757  rng1nnzr  20458  lmod1zr  45722
  Copyright terms: Public domain W3C validator