MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ring1 Structured version   Visualization version   GIF version

Theorem ring1 20307
Description: The (smallest) structure representing a zero ring. (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
ring1.m 𝑀 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
Assertion
Ref Expression
ring1 (𝑍𝑉𝑀 ∈ Ring)

Proof of Theorem ring1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
21grp1 19065 . . 3 (𝑍𝑉 → {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ Grp)
3 snex 5436 . . . . . 6 {𝑍} ∈ V
4 ring1.m . . . . . . 7 𝑀 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
54rngbase 17343 . . . . . 6 ({𝑍} ∈ V → {𝑍} = (Base‘𝑀))
63, 5ax-mp 5 . . . . 5 {𝑍} = (Base‘𝑀)
76eqcomi 2746 . . . 4 (Base‘𝑀) = {𝑍}
8 snex 5436 . . . . 5 {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V
94rngplusg 17344 . . . . . 6 ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V → {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (+g𝑀))
109eqcomd 2743 . . . . 5 ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V → (+g𝑀) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})
118, 10ax-mp 5 . . . 4 (+g𝑀) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}
127, 11, 1grppropstr 18971 . . 3 (𝑀 ∈ Grp ↔ {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ Grp)
132, 12sylibr 234 . 2 (𝑍𝑉𝑀 ∈ Grp)
141mnd1 18792 . . 3 (𝑍𝑉 → {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ Mnd)
15 eqid 2737 . . . . . 6 (mulGrp‘𝑀) = (mulGrp‘𝑀)
1615, 6mgpbas 20142 . . . . 5 {𝑍} = (Base‘(mulGrp‘𝑀))
171grpbase 17330 . . . . . 6 ({𝑍} ∈ V → {𝑍} = (Base‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}))
183, 17ax-mp 5 . . . . 5 {𝑍} = (Base‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩})
1916, 18eqtr3i 2767 . . . 4 (Base‘(mulGrp‘𝑀)) = (Base‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩})
204rngmulr 17345 . . . . . 6 ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V → {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (.r𝑀))
218, 20ax-mp 5 . . . . 5 {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (.r𝑀)
221grpplusg 17332 . . . . . 6 ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V → {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (+g‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}))
238, 22ax-mp 5 . . . . 5 {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (+g‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩})
24 eqid 2737 . . . . . 6 (.r𝑀) = (.r𝑀)
2515, 24mgpplusg 20141 . . . . 5 (.r𝑀) = (+g‘(mulGrp‘𝑀))
2621, 23, 253eqtr3ri 2774 . . . 4 (+g‘(mulGrp‘𝑀)) = (+g‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩})
2719, 26mndprop 18773 . . 3 ((mulGrp‘𝑀) ∈ Mnd ↔ {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ Mnd)
2814, 27sylibr 234 . 2 (𝑍𝑉 → (mulGrp‘𝑀) ∈ Mnd)
29 df-ov 7434 . . . . . 6 (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩}‘⟨𝑍, 𝑍⟩)
30 opex 5469 . . . . . . 7 𝑍, 𝑍⟩ ∈ V
31 fvsng 7200 . . . . . . 7 ((⟨𝑍, 𝑍⟩ ∈ V ∧ 𝑍𝑉) → ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩}‘⟨𝑍, 𝑍⟩) = 𝑍)
3230, 31mpan 690 . . . . . 6 (𝑍𝑉 → ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩}‘⟨𝑍, 𝑍⟩) = 𝑍)
3329, 32eqtrid 2789 . . . . 5 (𝑍𝑉 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = 𝑍)
3433oveq2d 7447 . . . 4 (𝑍𝑉 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
3533, 33oveq12d 7449 . . . 4 (𝑍𝑉 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
3634, 35eqtr4d 2780 . . 3 (𝑍𝑉 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
3733oveq1d 7446 . . . 4 (𝑍𝑉 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
3837, 35eqtr4d 2780 . . 3 (𝑍𝑉 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
39 oveq1 7438 . . . . . . . 8 (𝑎 = 𝑍 → (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
40 oveq1 7438 . . . . . . . . 9 (𝑎 = 𝑍 → (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏))
41 oveq1 7438 . . . . . . . . 9 (𝑎 = 𝑍 → (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))
4240, 41oveq12d 7449 . . . . . . . 8 (𝑎 = 𝑍 → ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
4339, 42eqeq12d 2753 . . . . . . 7 (𝑎 = 𝑍 → ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
4440oveq1d 7446 . . . . . . . 8 (𝑎 = 𝑍 → ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))
4541oveq1d 7446 . . . . . . . 8 (𝑎 = 𝑍 → ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
4644, 45eqeq12d 2753 . . . . . . 7 (𝑎 = 𝑍 → (((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
4743, 46anbi12d 632 . . . . . 6 (𝑎 = 𝑍 → (((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
48472ralbidv 3221 . . . . 5 (𝑎 = 𝑍 → (∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
4948ralsng 4675 . . . 4 (𝑍𝑉 → (∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
50 oveq1 7438 . . . . . . . . 9 (𝑏 = 𝑍 → (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))
5150oveq2d 7447 . . . . . . . 8 (𝑏 = 𝑍 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
52 oveq2 7439 . . . . . . . . 9 (𝑏 = 𝑍 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
5352oveq1d 7446 . . . . . . . 8 (𝑏 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
5451, 53eqeq12d 2753 . . . . . . 7 (𝑏 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
5552oveq1d 7446 . . . . . . . 8 (𝑏 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))
5650oveq2d 7447 . . . . . . . 8 (𝑏 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
5755, 56eqeq12d 2753 . . . . . . 7 (𝑏 = 𝑍 → (((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
5854, 57anbi12d 632 . . . . . 6 (𝑏 = 𝑍 → (((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
5958ralbidv 3178 . . . . 5 (𝑏 = 𝑍 → (∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
6059ralsng 4675 . . . 4 (𝑍𝑉 → (∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
61 oveq2 7439 . . . . . . . 8 (𝑐 = 𝑍 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
6261oveq2d 7447 . . . . . . 7 (𝑐 = 𝑍 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
6361oveq2d 7447 . . . . . . 7 (𝑐 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
6462, 63eqeq12d 2753 . . . . . 6 (𝑐 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))))
65 oveq2 7439 . . . . . . 7 (𝑐 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
6661, 61oveq12d 7449 . . . . . . 7 (𝑐 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
6765, 66eqeq12d 2753 . . . . . 6 (𝑐 = 𝑍 → (((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))))
6864, 67anbi12d 632 . . . . 5 (𝑐 = 𝑍 → (((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))))
6968ralsng 4675 . . . 4 (𝑍𝑉 → (∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))))
7049, 60, 693bitrd 305 . . 3 (𝑍𝑉 → (∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))))
7136, 38, 70mpbir2and 713 . 2 (𝑍𝑉 → ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
728, 9ax-mp 5 . . 3 {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (+g𝑀)
736, 15, 72, 21isring 20234 . 2 (𝑀 ∈ Ring ↔ (𝑀 ∈ Grp ∧ (mulGrp‘𝑀) ∈ Mnd ∧ ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
7413, 28, 71, 73syl3anbrc 1344 1 (𝑍𝑉𝑀 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  {csn 4626  {cpr 4628  {ctp 4630  cop 4632  cfv 6561  (class class class)co 7431  ndxcnx 17230  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  Mndcmnd 18747  Grpcgrp 18951  mulGrpcmgp 20137  Ringcrg 20230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-mgp 20138  df-ring 20232
This theorem is referenced by:  ringn0  20308  rng1nnzr  20776  lmod1zr  48410
  Copyright terms: Public domain W3C validator