MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ring1 Structured version   Visualization version   GIF version

Theorem ring1 18918
Description: The (smallest) structure representing a zero ring. (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
ring1.m 𝑀 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
Assertion
Ref Expression
ring1 (𝑍𝑉𝑀 ∈ Ring)

Proof of Theorem ring1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2799 . . . 4 {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
21grp1 17838 . . 3 (𝑍𝑉 → {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ Grp)
3 snex 5099 . . . . . 6 {𝑍} ∈ V
4 ring1.m . . . . . . 7 𝑀 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
54rngbase 16322 . . . . . 6 ({𝑍} ∈ V → {𝑍} = (Base‘𝑀))
63, 5ax-mp 5 . . . . 5 {𝑍} = (Base‘𝑀)
76eqcomi 2808 . . . 4 (Base‘𝑀) = {𝑍}
8 snex 5099 . . . . 5 {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V
94rngplusg 16323 . . . . . 6 ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V → {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (+g𝑀))
109eqcomd 2805 . . . . 5 ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V → (+g𝑀) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})
118, 10ax-mp 5 . . . 4 (+g𝑀) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}
127, 11, 1grppropstr 17755 . . 3 (𝑀 ∈ Grp ↔ {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ Grp)
132, 12sylibr 226 . 2 (𝑍𝑉𝑀 ∈ Grp)
141mnd1 17646 . . 3 (𝑍𝑉 → {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ Mnd)
15 eqid 2799 . . . . . 6 (mulGrp‘𝑀) = (mulGrp‘𝑀)
1615, 6mgpbas 18811 . . . . 5 {𝑍} = (Base‘(mulGrp‘𝑀))
171grpbase 16312 . . . . . 6 ({𝑍} ∈ V → {𝑍} = (Base‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}))
183, 17ax-mp 5 . . . . 5 {𝑍} = (Base‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩})
1916, 18eqtr3i 2823 . . . 4 (Base‘(mulGrp‘𝑀)) = (Base‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩})
204rngmulr 16324 . . . . . 6 ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V → {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (.r𝑀))
218, 20ax-mp 5 . . . . 5 {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (.r𝑀)
221grpplusg 16313 . . . . . 6 ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∈ V → {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (+g‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}))
238, 22ax-mp 5 . . . . 5 {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (+g‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩})
24 eqid 2799 . . . . . 6 (.r𝑀) = (.r𝑀)
2515, 24mgpplusg 18809 . . . . 5 (.r𝑀) = (+g‘(mulGrp‘𝑀))
2621, 23, 253eqtr3ri 2830 . . . 4 (+g‘(mulGrp‘𝑀)) = (+g‘{⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩})
2719, 26mndprop 17632 . . 3 ((mulGrp‘𝑀) ∈ Mnd ↔ {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ Mnd)
2814, 27sylibr 226 . 2 (𝑍𝑉 → (mulGrp‘𝑀) ∈ Mnd)
29 df-ov 6881 . . . . . 6 (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩}‘⟨𝑍, 𝑍⟩)
30 opex 5123 . . . . . . 7 𝑍, 𝑍⟩ ∈ V
31 fvsng 6676 . . . . . . 7 ((⟨𝑍, 𝑍⟩ ∈ V ∧ 𝑍𝑉) → ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩}‘⟨𝑍, 𝑍⟩) = 𝑍)
3230, 31mpan 682 . . . . . 6 (𝑍𝑉 → ({⟨⟨𝑍, 𝑍⟩, 𝑍⟩}‘⟨𝑍, 𝑍⟩) = 𝑍)
3329, 32syl5eq 2845 . . . . 5 (𝑍𝑉 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = 𝑍)
3433oveq2d 6894 . . . 4 (𝑍𝑉 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
3533, 33oveq12d 6896 . . . 4 (𝑍𝑉 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
3634, 35eqtr4d 2836 . . 3 (𝑍𝑉 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
3733oveq1d 6893 . . . 4 (𝑍𝑉 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
3837, 35eqtr4d 2836 . . 3 (𝑍𝑉 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
39 oveq1 6885 . . . . . . . 8 (𝑎 = 𝑍 → (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
40 oveq1 6885 . . . . . . . . 9 (𝑎 = 𝑍 → (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏))
41 oveq1 6885 . . . . . . . . 9 (𝑎 = 𝑍 → (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))
4240, 41oveq12d 6896 . . . . . . . 8 (𝑎 = 𝑍 → ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
4339, 42eqeq12d 2814 . . . . . . 7 (𝑎 = 𝑍 → ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
4440oveq1d 6893 . . . . . . . 8 (𝑎 = 𝑍 → ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))
4541oveq1d 6893 . . . . . . . 8 (𝑎 = 𝑍 → ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
4644, 45eqeq12d 2814 . . . . . . 7 (𝑎 = 𝑍 → (((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
4743, 46anbi12d 625 . . . . . 6 (𝑎 = 𝑍 → (((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
48472ralbidv 3170 . . . . 5 (𝑎 = 𝑍 → (∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
4948ralsng 4409 . . . 4 (𝑍𝑉 → (∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
50 oveq1 6885 . . . . . . . . 9 (𝑏 = 𝑍 → (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))
5150oveq2d 6894 . . . . . . . 8 (𝑏 = 𝑍 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
52 oveq2 6886 . . . . . . . . 9 (𝑏 = 𝑍 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
5352oveq1d 6893 . . . . . . . 8 (𝑏 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
5451, 53eqeq12d 2814 . . . . . . 7 (𝑏 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
5552oveq1d 6893 . . . . . . . 8 (𝑏 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))
5650oveq2d 6894 . . . . . . . 8 (𝑏 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))
5755, 56eqeq12d 2814 . . . . . . 7 (𝑏 = 𝑍 → (((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
5854, 57anbi12d 625 . . . . . 6 (𝑏 = 𝑍 → (((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
5958ralbidv 3167 . . . . 5 (𝑏 = 𝑍 → (∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
6059ralsng 4409 . . . 4 (𝑍𝑉 → (∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
61 oveq2 6886 . . . . . . . 8 (𝑐 = 𝑍 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
6261oveq2d 6894 . . . . . . 7 (𝑐 = 𝑍 → (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
6361oveq2d 6894 . . . . . . 7 (𝑐 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
6462, 63eqeq12d 2814 . . . . . 6 (𝑐 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))))
65 oveq2 6886 . . . . . . 7 (𝑐 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))
6661, 61oveq12d 6896 . . . . . . 7 (𝑐 = 𝑍 → ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))
6765, 66eqeq12d 2814 . . . . . 6 (𝑐 = 𝑍 → (((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍))))
6864, 67anbi12d 625 . . . . 5 (𝑐 = 𝑍 → (((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))))
6968ralsng 4409 . . . 4 (𝑍𝑉 → (∀𝑐 ∈ {𝑍} ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))))
7049, 60, 693bitrd 297 . . 3 (𝑍𝑉 → (∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))) ↔ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)) ∧ ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍) = ((𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑍{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑍)))))
7136, 38, 70mpbir2and 705 . 2 (𝑍𝑉 → ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐))))
728, 9ax-mp 5 . . 3 {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} = (+g𝑀)
736, 15, 72, 21isring 18867 . 2 (𝑀 ∈ Ring ↔ (𝑀 ∈ Grp ∧ (mulGrp‘𝑀) ∈ Mnd ∧ ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)) ∧ ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑏){⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐) = ((𝑎{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐){⟨⟨𝑍, 𝑍⟩, 𝑍⟩} (𝑏{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}𝑐)))))
7413, 28, 71, 73syl3anbrc 1444 1 (𝑍𝑉𝑀 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wral 3089  Vcvv 3385  {csn 4368  {cpr 4370  {ctp 4372  cop 4374  cfv 6101  (class class class)co 6878  ndxcnx 16181  Basecbs 16184  +gcplusg 16267  .rcmulr 16268  Mndcmnd 17609  Grpcgrp 17738  mulGrpcmgp 18805  Ringcrg 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-plusg 16280  df-mulr 16281  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-grp 17741  df-mgp 18806  df-ring 18865
This theorem is referenced by:  ringn0  18919  rng1nnzr  19597  lmod1zr  43077
  Copyright terms: Public domain W3C validator