| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subthinc | Structured version Visualization version GIF version | ||
| Description: A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| subthinc.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
| subthinc.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| subthinc.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Ref | Expression |
|---|---|
| subthinc | ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subthinc.1 | . . 3 ⊢ 𝐷 = (𝐶 ↾cat 𝐽) | |
| 2 | eqid 2736 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | subthinc.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 4 | subthinc.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
| 5 | eqidd 2737 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
| 6 | 4, 5 | subcfn 17859 | . . 3 ⊢ (𝜑 → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
| 7 | 4, 6, 2 | subcss1 17860 | . . 3 ⊢ (𝜑 → dom dom 𝐽 ⊆ (Base‘𝐶)) |
| 8 | 1, 2, 3, 6, 7 | rescbas 17847 | . 2 ⊢ (𝜑 → dom dom 𝐽 = (Base‘𝐷)) |
| 9 | 1, 2, 3, 6, 7 | reschom 17848 | . 2 ⊢ (𝜑 → 𝐽 = (Hom ‘𝐷)) |
| 10 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐽 ∈ (Subcat‘𝐶)) |
| 11 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
| 12 | eqid 2736 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 13 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑥 ∈ dom dom 𝐽) | |
| 14 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑦 ∈ dom dom 𝐽) | |
| 15 | 10, 11, 12, 13, 14 | subcss2 17861 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → (𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦)) |
| 16 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐶 ∈ ThinCat) |
| 17 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → dom dom 𝐽 ⊆ (Base‘𝐶)) |
| 18 | 17, 13 | sseldd 3964 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑥 ∈ (Base‘𝐶)) |
| 19 | 17, 14 | sseldd 3964 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑦 ∈ (Base‘𝐶)) |
| 20 | 16, 18, 19, 2, 12 | thincmo 49281 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 21 | mosssn2 48762 | . . . . 5 ⊢ (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓}) | |
| 22 | 20, 21 | sylib 218 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓}) |
| 23 | sstr2 3970 | . . . . 5 ⊢ ((𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦) → ((𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓} → (𝑥𝐽𝑦) ⊆ {𝑓})) | |
| 24 | 23 | eximdv 1917 | . . . 4 ⊢ ((𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦) → (∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓} → ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓})) |
| 25 | 15, 22, 24 | sylc 65 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓}) |
| 26 | mosssn2 48762 | . . 3 ⊢ (∃*𝑓 𝑓 ∈ (𝑥𝐽𝑦) ↔ ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓}) | |
| 27 | 25, 26 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃*𝑓 𝑓 ∈ (𝑥𝐽𝑦)) |
| 28 | 1, 4 | subccat 17866 | . 2 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 29 | 8, 9, 27, 28 | isthincd 49289 | 1 ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2538 ⊆ wss 3931 {csn 4606 × cxp 5657 dom cdm 5659 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Hom chom 17287 ↾cat cresc 17826 Subcatcsubc 17827 ThinCatcthinc 49270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-hom 17300 df-cco 17301 df-cat 17685 df-cid 17686 df-homf 17687 df-ssc 17828 df-resc 17829 df-subc 17830 df-thinc 49271 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |