Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subthinc Structured version   Visualization version   GIF version

Theorem subthinc 49436
Description: A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.)
Hypotheses
Ref Expression
subthinc.1 𝐷 = (𝐶cat 𝐽)
subthinc.j (𝜑𝐽 ∈ (Subcat‘𝐶))
subthinc.c (𝜑𝐶 ∈ ThinCat)
Assertion
Ref Expression
subthinc (𝜑𝐷 ∈ ThinCat)

Proof of Theorem subthinc
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subthinc.1 . . 3 𝐷 = (𝐶cat 𝐽)
2 eqid 2730 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 subthinc.c . . 3 (𝜑𝐶 ∈ ThinCat)
4 subthinc.j . . . 4 (𝜑𝐽 ∈ (Subcat‘𝐶))
5 eqidd 2731 . . . 4 (𝜑 → dom dom 𝐽 = dom dom 𝐽)
64, 5subcfn 17810 . . 3 (𝜑𝐽 Fn (dom dom 𝐽 × dom dom 𝐽))
74, 6, 2subcss1 17811 . . 3 (𝜑 → dom dom 𝐽 ⊆ (Base‘𝐶))
81, 2, 3, 6, 7rescbas 17798 . 2 (𝜑 → dom dom 𝐽 = (Base‘𝐷))
91, 2, 3, 6, 7reschom 17799 . 2 (𝜑𝐽 = (Hom ‘𝐷))
104adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽𝑦 ∈ dom dom 𝐽)) → 𝐽 ∈ (Subcat‘𝐶))
116adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽𝑦 ∈ dom dom 𝐽)) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽))
12 eqid 2730 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
13 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽𝑦 ∈ dom dom 𝐽)) → 𝑥 ∈ dom dom 𝐽)
14 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽𝑦 ∈ dom dom 𝐽)) → 𝑦 ∈ dom dom 𝐽)
1510, 11, 12, 13, 14subcss2 17812 . . . 4 ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽𝑦 ∈ dom dom 𝐽)) → (𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦))
163adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽𝑦 ∈ dom dom 𝐽)) → 𝐶 ∈ ThinCat)
177adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽𝑦 ∈ dom dom 𝐽)) → dom dom 𝐽 ⊆ (Base‘𝐶))
1817, 13sseldd 3950 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽𝑦 ∈ dom dom 𝐽)) → 𝑥 ∈ (Base‘𝐶))
1917, 14sseldd 3950 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽𝑦 ∈ dom dom 𝐽)) → 𝑦 ∈ (Base‘𝐶))
2016, 18, 19, 2, 12thincmo 49421 . . . . 5 ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽𝑦 ∈ dom dom 𝐽)) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
21 mosssn2 48809 . . . . 5 (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓})
2220, 21sylib 218 . . . 4 ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽𝑦 ∈ dom dom 𝐽)) → ∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓})
23 sstr2 3956 . . . . 5 ((𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦) → ((𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓} → (𝑥𝐽𝑦) ⊆ {𝑓}))
2423eximdv 1917 . . . 4 ((𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦) → (∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓} → ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓}))
2515, 22, 24sylc 65 . . 3 ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽𝑦 ∈ dom dom 𝐽)) → ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓})
26 mosssn2 48809 . . 3 (∃*𝑓 𝑓 ∈ (𝑥𝐽𝑦) ↔ ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓})
2725, 26sylibr 234 . 2 ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽𝑦 ∈ dom dom 𝐽)) → ∃*𝑓 𝑓 ∈ (𝑥𝐽𝑦))
281, 4subccat 17817 . 2 (𝜑𝐷 ∈ Cat)
298, 9, 27, 28isthincd 49429 1 (𝜑𝐷 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2532  wss 3917  {csn 4592   × cxp 5639  dom cdm 5641   Fn wfn 6509  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  cat cresc 17777  Subcatcsubc 17778  ThinCatcthinc 49410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-homf 17638  df-ssc 17779  df-resc 17780  df-subc 17781  df-thinc 49411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator