Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > subthinc | Structured version Visualization version GIF version |
Description: A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
subthinc.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
subthinc.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
subthinc.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
Ref | Expression |
---|---|
subthinc | ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subthinc.1 | . . 3 ⊢ 𝐷 = (𝐶 ↾cat 𝐽) | |
2 | eqid 2740 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | subthinc.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
4 | subthinc.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
5 | eqidd 2741 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
6 | 4, 5 | subcfn 17546 | . . 3 ⊢ (𝜑 → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
7 | 4, 6, 2 | subcss1 17547 | . . 3 ⊢ (𝜑 → dom dom 𝐽 ⊆ (Base‘𝐶)) |
8 | 1, 2, 3, 6, 7 | rescbas 17531 | . 2 ⊢ (𝜑 → dom dom 𝐽 = (Base‘𝐷)) |
9 | 1, 2, 3, 6, 7 | reschom 17533 | . 2 ⊢ (𝜑 → 𝐽 = (Hom ‘𝐷)) |
10 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐽 ∈ (Subcat‘𝐶)) |
11 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
12 | eqid 2740 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
13 | simprl 768 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑥 ∈ dom dom 𝐽) | |
14 | simprr 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑦 ∈ dom dom 𝐽) | |
15 | 10, 11, 12, 13, 14 | subcss2 17548 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → (𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦)) |
16 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐶 ∈ ThinCat) |
17 | 7 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → dom dom 𝐽 ⊆ (Base‘𝐶)) |
18 | 17, 13 | sseldd 3927 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑥 ∈ (Base‘𝐶)) |
19 | 17, 14 | sseldd 3927 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑦 ∈ (Base‘𝐶)) |
20 | 16, 18, 19, 2, 12 | thincmo 46271 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
21 | mosssn2 46123 | . . . . 5 ⊢ (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓}) | |
22 | 20, 21 | sylib 217 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓}) |
23 | sstr2 3933 | . . . . 5 ⊢ ((𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦) → ((𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓} → (𝑥𝐽𝑦) ⊆ {𝑓})) | |
24 | 23 | eximdv 1924 | . . . 4 ⊢ ((𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦) → (∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓} → ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓})) |
25 | 15, 22, 24 | sylc 65 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓}) |
26 | mosssn2 46123 | . . 3 ⊢ (∃*𝑓 𝑓 ∈ (𝑥𝐽𝑦) ↔ ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓}) | |
27 | 25, 26 | sylibr 233 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃*𝑓 𝑓 ∈ (𝑥𝐽𝑦)) |
28 | 1, 4 | subccat 17553 | . 2 ⊢ (𝜑 → 𝐷 ∈ Cat) |
29 | 8, 9, 27, 28 | isthincd 46279 | 1 ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∃wex 1786 ∈ wcel 2110 ∃*wmo 2540 ⊆ wss 3892 {csn 4567 × cxp 5587 dom cdm 5589 Fn wfn 6426 ‘cfv 6431 (class class class)co 7269 Basecbs 16902 Hom chom 16963 ↾cat cresc 17510 Subcatcsubc 17511 ThinCatcthinc 46261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-er 8473 df-pm 8593 df-ixp 8661 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-5 12031 df-6 12032 df-7 12033 df-8 12034 df-9 12035 df-n0 12226 df-z 12312 df-dec 12429 df-sets 16855 df-slot 16873 df-ndx 16885 df-base 16903 df-ress 16932 df-hom 16976 df-cco 16977 df-cat 17367 df-cid 17368 df-homf 17369 df-ssc 17512 df-resc 17513 df-subc 17514 df-thinc 46262 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |