| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subthinc | Structured version Visualization version GIF version | ||
| Description: A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| subthinc.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
| subthinc.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| subthinc.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Ref | Expression |
|---|---|
| subthinc | ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subthinc.1 | . . 3 ⊢ 𝐷 = (𝐶 ↾cat 𝐽) | |
| 2 | eqid 2731 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | subthinc.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 4 | subthinc.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
| 5 | eqidd 2732 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
| 6 | 4, 5 | subcfn 17745 | . . 3 ⊢ (𝜑 → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
| 7 | 4, 6, 2 | subcss1 17746 | . . 3 ⊢ (𝜑 → dom dom 𝐽 ⊆ (Base‘𝐶)) |
| 8 | 1, 2, 3, 6, 7 | rescbas 17733 | . 2 ⊢ (𝜑 → dom dom 𝐽 = (Base‘𝐷)) |
| 9 | 1, 2, 3, 6, 7 | reschom 17734 | . 2 ⊢ (𝜑 → 𝐽 = (Hom ‘𝐷)) |
| 10 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐽 ∈ (Subcat‘𝐶)) |
| 11 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
| 12 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 13 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑥 ∈ dom dom 𝐽) | |
| 14 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑦 ∈ dom dom 𝐽) | |
| 15 | 10, 11, 12, 13, 14 | subcss2 17747 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → (𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦)) |
| 16 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐶 ∈ ThinCat) |
| 17 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → dom dom 𝐽 ⊆ (Base‘𝐶)) |
| 18 | 17, 13 | sseldd 3935 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑥 ∈ (Base‘𝐶)) |
| 19 | 17, 14 | sseldd 3935 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑦 ∈ (Base‘𝐶)) |
| 20 | 16, 18, 19, 2, 12 | thincmo 49459 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 21 | mosssn2 48847 | . . . . 5 ⊢ (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓}) | |
| 22 | 20, 21 | sylib 218 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓}) |
| 23 | sstr2 3941 | . . . . 5 ⊢ ((𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦) → ((𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓} → (𝑥𝐽𝑦) ⊆ {𝑓})) | |
| 24 | 23 | eximdv 1918 | . . . 4 ⊢ ((𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦) → (∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓} → ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓})) |
| 25 | 15, 22, 24 | sylc 65 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓}) |
| 26 | mosssn2 48847 | . . 3 ⊢ (∃*𝑓 𝑓 ∈ (𝑥𝐽𝑦) ↔ ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓}) | |
| 27 | 25, 26 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃*𝑓 𝑓 ∈ (𝑥𝐽𝑦)) |
| 28 | 1, 4 | subccat 17752 | . 2 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 29 | 8, 9, 27, 28 | isthincd 49467 | 1 ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃*wmo 2533 ⊆ wss 3902 {csn 4576 × cxp 5614 dom cdm 5616 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Hom chom 17169 ↾cat cresc 17712 Subcatcsubc 17713 ThinCatcthinc 49448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-hom 17182 df-cco 17183 df-cat 17571 df-cid 17572 df-homf 17573 df-ssc 17714 df-resc 17715 df-subc 17716 df-thinc 49449 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |