![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > subthinc | Structured version Visualization version GIF version |
Description: A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
subthinc.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
subthinc.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
subthinc.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
Ref | Expression |
---|---|
subthinc | ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subthinc.1 | . . 3 ⊢ 𝐷 = (𝐶 ↾cat 𝐽) | |
2 | eqid 2740 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | subthinc.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
4 | subthinc.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
5 | eqidd 2741 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
6 | 4, 5 | subcfn 17905 | . . 3 ⊢ (𝜑 → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
7 | 4, 6, 2 | subcss1 17906 | . . 3 ⊢ (𝜑 → dom dom 𝐽 ⊆ (Base‘𝐶)) |
8 | 1, 2, 3, 6, 7 | rescbas 17890 | . 2 ⊢ (𝜑 → dom dom 𝐽 = (Base‘𝐷)) |
9 | 1, 2, 3, 6, 7 | reschom 17892 | . 2 ⊢ (𝜑 → 𝐽 = (Hom ‘𝐷)) |
10 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐽 ∈ (Subcat‘𝐶)) |
11 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
12 | eqid 2740 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
13 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑥 ∈ dom dom 𝐽) | |
14 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑦 ∈ dom dom 𝐽) | |
15 | 10, 11, 12, 13, 14 | subcss2 17907 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → (𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦)) |
16 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐶 ∈ ThinCat) |
17 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → dom dom 𝐽 ⊆ (Base‘𝐶)) |
18 | 17, 13 | sseldd 4009 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑥 ∈ (Base‘𝐶)) |
19 | 17, 14 | sseldd 4009 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑦 ∈ (Base‘𝐶)) |
20 | 16, 18, 19, 2, 12 | thincmo 48696 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
21 | mosssn2 48548 | . . . . 5 ⊢ (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓}) | |
22 | 20, 21 | sylib 218 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓}) |
23 | sstr2 4015 | . . . . 5 ⊢ ((𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦) → ((𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓} → (𝑥𝐽𝑦) ⊆ {𝑓})) | |
24 | 23 | eximdv 1916 | . . . 4 ⊢ ((𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦) → (∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓} → ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓})) |
25 | 15, 22, 24 | sylc 65 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓}) |
26 | mosssn2 48548 | . . 3 ⊢ (∃*𝑓 𝑓 ∈ (𝑥𝐽𝑦) ↔ ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓}) | |
27 | 25, 26 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃*𝑓 𝑓 ∈ (𝑥𝐽𝑦)) |
28 | 1, 4 | subccat 17912 | . 2 ⊢ (𝜑 → 𝐷 ∈ Cat) |
29 | 8, 9, 27, 28 | isthincd 48704 | 1 ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃*wmo 2541 ⊆ wss 3976 {csn 4648 × cxp 5698 dom cdm 5700 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Hom chom 17322 ↾cat cresc 17869 Subcatcsubc 17870 ThinCatcthinc 48686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-hom 17335 df-cco 17336 df-cat 17726 df-cid 17727 df-homf 17728 df-ssc 17871 df-resc 17872 df-subc 17873 df-thinc 48687 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |