![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > subthinc | Structured version Visualization version GIF version |
Description: A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
subthinc.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
subthinc.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
subthinc.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
Ref | Expression |
---|---|
subthinc | ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subthinc.1 | . . 3 ⊢ 𝐷 = (𝐶 ↾cat 𝐽) | |
2 | eqid 2727 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | subthinc.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
4 | subthinc.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
5 | eqidd 2728 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
6 | 4, 5 | subcfn 17832 | . . 3 ⊢ (𝜑 → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
7 | 4, 6, 2 | subcss1 17833 | . . 3 ⊢ (𝜑 → dom dom 𝐽 ⊆ (Base‘𝐶)) |
8 | 1, 2, 3, 6, 7 | rescbas 17817 | . 2 ⊢ (𝜑 → dom dom 𝐽 = (Base‘𝐷)) |
9 | 1, 2, 3, 6, 7 | reschom 17819 | . 2 ⊢ (𝜑 → 𝐽 = (Hom ‘𝐷)) |
10 | 4 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐽 ∈ (Subcat‘𝐶)) |
11 | 6 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
12 | eqid 2727 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
13 | simprl 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑥 ∈ dom dom 𝐽) | |
14 | simprr 771 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑦 ∈ dom dom 𝐽) | |
15 | 10, 11, 12, 13, 14 | subcss2 17834 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → (𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦)) |
16 | 3 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝐶 ∈ ThinCat) |
17 | 7 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → dom dom 𝐽 ⊆ (Base‘𝐶)) |
18 | 17, 13 | sseldd 3981 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑥 ∈ (Base‘𝐶)) |
19 | 17, 14 | sseldd 3981 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → 𝑦 ∈ (Base‘𝐶)) |
20 | 16, 18, 19, 2, 12 | thincmo 48086 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
21 | mosssn2 47938 | . . . . 5 ⊢ (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓}) | |
22 | 20, 21 | sylib 217 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓}) |
23 | sstr2 3987 | . . . . 5 ⊢ ((𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦) → ((𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓} → (𝑥𝐽𝑦) ⊆ {𝑓})) | |
24 | 23 | eximdv 1912 | . . . 4 ⊢ ((𝑥𝐽𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦) → (∃𝑓(𝑥(Hom ‘𝐶)𝑦) ⊆ {𝑓} → ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓})) |
25 | 15, 22, 24 | sylc 65 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓}) |
26 | mosssn2 47938 | . . 3 ⊢ (∃*𝑓 𝑓 ∈ (𝑥𝐽𝑦) ↔ ∃𝑓(𝑥𝐽𝑦) ⊆ {𝑓}) | |
27 | 25, 26 | sylibr 233 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽)) → ∃*𝑓 𝑓 ∈ (𝑥𝐽𝑦)) |
28 | 1, 4 | subccat 17839 | . 2 ⊢ (𝜑 → 𝐷 ∈ Cat) |
29 | 8, 9, 27, 28 | isthincd 48094 | 1 ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃*wmo 2527 ⊆ wss 3947 {csn 4630 × cxp 5678 dom cdm 5680 Fn wfn 6546 ‘cfv 6551 (class class class)co 7424 Basecbs 17185 Hom chom 17249 ↾cat cresc 17796 Subcatcsubc 17797 ThinCatcthinc 48076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-hom 17262 df-cco 17263 df-cat 17653 df-cid 17654 df-homf 17655 df-ssc 17798 df-resc 17799 df-subc 17800 df-thinc 48077 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |