![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > subthinc | Structured version Visualization version GIF version |
Description: A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
subthinc.1 | β’ π· = (πΆ βΎcat π½) |
subthinc.j | β’ (π β π½ β (SubcatβπΆ)) |
subthinc.c | β’ (π β πΆ β ThinCat) |
Ref | Expression |
---|---|
subthinc | β’ (π β π· β ThinCat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subthinc.1 | . . 3 β’ π· = (πΆ βΎcat π½) | |
2 | eqid 2730 | . . 3 β’ (BaseβπΆ) = (BaseβπΆ) | |
3 | subthinc.c | . . 3 β’ (π β πΆ β ThinCat) | |
4 | subthinc.j | . . . 4 β’ (π β π½ β (SubcatβπΆ)) | |
5 | eqidd 2731 | . . . 4 β’ (π β dom dom π½ = dom dom π½) | |
6 | 4, 5 | subcfn 17795 | . . 3 β’ (π β π½ Fn (dom dom π½ Γ dom dom π½)) |
7 | 4, 6, 2 | subcss1 17796 | . . 3 β’ (π β dom dom π½ β (BaseβπΆ)) |
8 | 1, 2, 3, 6, 7 | rescbas 17780 | . 2 β’ (π β dom dom π½ = (Baseβπ·)) |
9 | 1, 2, 3, 6, 7 | reschom 17782 | . 2 β’ (π β π½ = (Hom βπ·)) |
10 | 4 | adantr 479 | . . . . 5 β’ ((π β§ (π₯ β dom dom π½ β§ π¦ β dom dom π½)) β π½ β (SubcatβπΆ)) |
11 | 6 | adantr 479 | . . . . 5 β’ ((π β§ (π₯ β dom dom π½ β§ π¦ β dom dom π½)) β π½ Fn (dom dom π½ Γ dom dom π½)) |
12 | eqid 2730 | . . . . 5 β’ (Hom βπΆ) = (Hom βπΆ) | |
13 | simprl 767 | . . . . 5 β’ ((π β§ (π₯ β dom dom π½ β§ π¦ β dom dom π½)) β π₯ β dom dom π½) | |
14 | simprr 769 | . . . . 5 β’ ((π β§ (π₯ β dom dom π½ β§ π¦ β dom dom π½)) β π¦ β dom dom π½) | |
15 | 10, 11, 12, 13, 14 | subcss2 17797 | . . . 4 β’ ((π β§ (π₯ β dom dom π½ β§ π¦ β dom dom π½)) β (π₯π½π¦) β (π₯(Hom βπΆ)π¦)) |
16 | 3 | adantr 479 | . . . . . 6 β’ ((π β§ (π₯ β dom dom π½ β§ π¦ β dom dom π½)) β πΆ β ThinCat) |
17 | 7 | adantr 479 | . . . . . . 7 β’ ((π β§ (π₯ β dom dom π½ β§ π¦ β dom dom π½)) β dom dom π½ β (BaseβπΆ)) |
18 | 17, 13 | sseldd 3982 | . . . . . 6 β’ ((π β§ (π₯ β dom dom π½ β§ π¦ β dom dom π½)) β π₯ β (BaseβπΆ)) |
19 | 17, 14 | sseldd 3982 | . . . . . 6 β’ ((π β§ (π₯ β dom dom π½ β§ π¦ β dom dom π½)) β π¦ β (BaseβπΆ)) |
20 | 16, 18, 19, 2, 12 | thincmo 47736 | . . . . 5 β’ ((π β§ (π₯ β dom dom π½ β§ π¦ β dom dom π½)) β β*π π β (π₯(Hom βπΆ)π¦)) |
21 | mosssn2 47588 | . . . . 5 β’ (β*π π β (π₯(Hom βπΆ)π¦) β βπ(π₯(Hom βπΆ)π¦) β {π}) | |
22 | 20, 21 | sylib 217 | . . . 4 β’ ((π β§ (π₯ β dom dom π½ β§ π¦ β dom dom π½)) β βπ(π₯(Hom βπΆ)π¦) β {π}) |
23 | sstr2 3988 | . . . . 5 β’ ((π₯π½π¦) β (π₯(Hom βπΆ)π¦) β ((π₯(Hom βπΆ)π¦) β {π} β (π₯π½π¦) β {π})) | |
24 | 23 | eximdv 1918 | . . . 4 β’ ((π₯π½π¦) β (π₯(Hom βπΆ)π¦) β (βπ(π₯(Hom βπΆ)π¦) β {π} β βπ(π₯π½π¦) β {π})) |
25 | 15, 22, 24 | sylc 65 | . . 3 β’ ((π β§ (π₯ β dom dom π½ β§ π¦ β dom dom π½)) β βπ(π₯π½π¦) β {π}) |
26 | mosssn2 47588 | . . 3 β’ (β*π π β (π₯π½π¦) β βπ(π₯π½π¦) β {π}) | |
27 | 25, 26 | sylibr 233 | . 2 β’ ((π β§ (π₯ β dom dom π½ β§ π¦ β dom dom π½)) β β*π π β (π₯π½π¦)) |
28 | 1, 4 | subccat 17802 | . 2 β’ (π β π· β Cat) |
29 | 8, 9, 27, 28 | isthincd 47744 | 1 β’ (π β π· β ThinCat) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 βwex 1779 β wcel 2104 β*wmo 2530 β wss 3947 {csn 4627 Γ cxp 5673 dom cdm 5675 Fn wfn 6537 βcfv 6542 (class class class)co 7411 Basecbs 17148 Hom chom 17212 βΎcat cresc 17759 Subcatcsubc 17760 ThinCatcthinc 47726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-hom 17225 df-cco 17226 df-cat 17616 df-cid 17617 df-homf 17618 df-ssc 17761 df-resc 17762 df-subc 17763 df-thinc 47727 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |