MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recp1lt1 Structured version   Visualization version   GIF version

Theorem recp1lt1 12088
Description: Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
recp1lt1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1)

Proof of Theorem recp1lt1
StepHypRef Expression
1 ltp1 12029 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
2 recn 11165 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 ax-1cn 11133 . . . . . 6 1 ∈ ℂ
4 addcom 11367 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
52, 3, 4sylancl 586 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + 1) = (1 + 𝐴))
61, 5breqtrd 5136 . . . 4 (𝐴 ∈ ℝ → 𝐴 < (1 + 𝐴))
76adantr 480 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 < (1 + 𝐴))
82adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
9 1re 11181 . . . . . . 7 1 ∈ ℝ
10 readdcl 11158 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 + 𝐴) ∈ ℝ)
119, 10mpan 690 . . . . . 6 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℝ)
1211adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ∈ ℝ)
1312recnd 11209 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ∈ ℂ)
14 0lt1 11707 . . . . . . 7 0 < 1
15 addgtge0 11673 . . . . . . 7 (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 < 1 ∧ 0 ≤ 𝐴)) → 0 < (1 + 𝐴))
1614, 15mpanr1 703 . . . . . 6 (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 0 ≤ 𝐴) → 0 < (1 + 𝐴))
179, 16mpanl1 700 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 < (1 + 𝐴))
1817gt0ne0d 11749 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ≠ 0)
198, 13, 18divcan1d 11966 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) = 𝐴)
2011recnd 11209 . . . . 5 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℂ)
2120mullidd 11199 . . . 4 (𝐴 ∈ ℝ → (1 · (1 + 𝐴)) = (1 + 𝐴))
2221adantr 480 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 · (1 + 𝐴)) = (1 + 𝐴))
237, 19, 223brtr4d 5142 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴)))
24 simpl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
2524, 12, 18redivcld 12017 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) ∈ ℝ)
26 ltmul1 12039 . . . 4 (((𝐴 / (1 + 𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((1 + 𝐴) ∈ ℝ ∧ 0 < (1 + 𝐴))) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴))))
279, 26mp3an2 1451 . . 3 (((𝐴 / (1 + 𝐴)) ∈ ℝ ∧ ((1 + 𝐴) ∈ ℝ ∧ 0 < (1 + 𝐴))) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴))))
2825, 12, 17, 27syl12anc 836 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴))))
2923, 28mpbird 257 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator