| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recp1lt1 | Structured version Visualization version GIF version | ||
| Description: Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.) |
| Ref | Expression |
|---|---|
| recp1lt1 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1 11972 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
| 2 | recn 11107 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 3 | ax-1cn 11075 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 4 | addcom 11310 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) = (1 + 𝐴)) |
| 6 | 1, 5 | breqtrd 5121 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 < (1 + 𝐴)) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 < (1 + 𝐴)) |
| 8 | 2 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ) |
| 9 | 1re 11123 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 10 | readdcl 11100 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 + 𝐴) ∈ ℝ) | |
| 11 | 9, 10 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℝ) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ∈ ℝ) |
| 13 | 12 | recnd 11151 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ∈ ℂ) |
| 14 | 0lt1 11650 | . . . . . . 7 ⊢ 0 < 1 | |
| 15 | addgtge0 11616 | . . . . . . 7 ⊢ (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 < 1 ∧ 0 ≤ 𝐴)) → 0 < (1 + 𝐴)) | |
| 16 | 14, 15 | mpanr1 703 | . . . . . 6 ⊢ (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 0 ≤ 𝐴) → 0 < (1 + 𝐴)) |
| 17 | 9, 16 | mpanl1 700 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 < (1 + 𝐴)) |
| 18 | 17 | gt0ne0d 11692 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ≠ 0) |
| 19 | 8, 13, 18 | divcan1d 11909 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) = 𝐴) |
| 20 | 11 | recnd 11151 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℂ) |
| 21 | 20 | mullidd 11141 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1 · (1 + 𝐴)) = (1 + 𝐴)) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 · (1 + 𝐴)) = (1 + 𝐴)) |
| 23 | 7, 19, 22 | 3brtr4d 5127 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴))) |
| 24 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
| 25 | 24, 12, 18 | redivcld 11960 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) ∈ ℝ) |
| 26 | ltmul1 11982 | . . . 4 ⊢ (((𝐴 / (1 + 𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((1 + 𝐴) ∈ ℝ ∧ 0 < (1 + 𝐴))) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴)))) | |
| 27 | 9, 26 | mp3an2 1451 | . . 3 ⊢ (((𝐴 / (1 + 𝐴)) ∈ ℝ ∧ ((1 + 𝐴) ∈ ℝ ∧ 0 < (1 + 𝐴))) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴)))) |
| 28 | 25, 12, 17, 27 | syl12anc 836 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴)))) |
| 29 | 23, 28 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℂcc 11015 ℝcr 11016 0cc0 11017 1c1 11018 + caddc 11020 · cmul 11022 < clt 11157 ≤ cle 11158 / cdiv 11785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |