MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recp1lt1 Structured version   Visualization version   GIF version

Theorem recp1lt1 11337
Description: Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
recp1lt1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1)

Proof of Theorem recp1lt1
StepHypRef Expression
1 ltp1 11279 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
2 recn 10423 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 ax-1cn 10391 . . . . . 6 1 ∈ ℂ
4 addcom 10624 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
52, 3, 4sylancl 578 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + 1) = (1 + 𝐴))
61, 5breqtrd 4951 . . . 4 (𝐴 ∈ ℝ → 𝐴 < (1 + 𝐴))
76adantr 473 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 < (1 + 𝐴))
82adantr 473 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
9 1re 10437 . . . . . . 7 1 ∈ ℝ
10 readdcl 10416 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 + 𝐴) ∈ ℝ)
119, 10mpan 678 . . . . . 6 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℝ)
1211adantr 473 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ∈ ℝ)
1312recnd 10466 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ∈ ℂ)
14 0lt1 10961 . . . . . . 7 0 < 1
15 addgtge0 10927 . . . . . . 7 (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 < 1 ∧ 0 ≤ 𝐴)) → 0 < (1 + 𝐴))
1614, 15mpanr1 691 . . . . . 6 (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 0 ≤ 𝐴) → 0 < (1 + 𝐴))
179, 16mpanl1 688 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 < (1 + 𝐴))
1817gt0ne0d 11003 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ≠ 0)
198, 13, 18divcan1d 11216 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) = 𝐴)
2011recnd 10466 . . . . 5 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℂ)
2120mulid2d 10456 . . . 4 (𝐴 ∈ ℝ → (1 · (1 + 𝐴)) = (1 + 𝐴))
2221adantr 473 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 · (1 + 𝐴)) = (1 + 𝐴))
237, 19, 223brtr4d 4957 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴)))
24 simpl 475 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
2524, 12, 18redivcld 11267 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) ∈ ℝ)
26 ltmul1 11289 . . . 4 (((𝐴 / (1 + 𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((1 + 𝐴) ∈ ℝ ∧ 0 < (1 + 𝐴))) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴))))
279, 26mp3an2 1429 . . 3 (((𝐴 / (1 + 𝐴)) ∈ ℝ ∧ ((1 + 𝐴) ∈ ℝ ∧ 0 < (1 + 𝐴))) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴))))
2825, 12, 17, 27syl12anc 825 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴))))
2923, 28mpbird 249 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051   class class class wbr 4925  (class class class)co 6974  cc 10331  cr 10332  0cc0 10333  1c1 10334   + caddc 10336   · cmul 10338   < clt 10472  cle 10473   / cdiv 11096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-po 5322  df-so 5323  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator