MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recp1lt1 Structured version   Visualization version   GIF version

Theorem recp1lt1 12015
Description: Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
recp1lt1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1)

Proof of Theorem recp1lt1
StepHypRef Expression
1 ltp1 11956 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
2 recn 11091 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 ax-1cn 11059 . . . . . 6 1 ∈ ℂ
4 addcom 11294 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
52, 3, 4sylancl 586 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + 1) = (1 + 𝐴))
61, 5breqtrd 5112 . . . 4 (𝐴 ∈ ℝ → 𝐴 < (1 + 𝐴))
76adantr 480 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 < (1 + 𝐴))
82adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
9 1re 11107 . . . . . . 7 1 ∈ ℝ
10 readdcl 11084 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 + 𝐴) ∈ ℝ)
119, 10mpan 690 . . . . . 6 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℝ)
1211adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ∈ ℝ)
1312recnd 11135 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ∈ ℂ)
14 0lt1 11634 . . . . . . 7 0 < 1
15 addgtge0 11600 . . . . . . 7 (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 < 1 ∧ 0 ≤ 𝐴)) → 0 < (1 + 𝐴))
1614, 15mpanr1 703 . . . . . 6 (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 0 ≤ 𝐴) → 0 < (1 + 𝐴))
179, 16mpanl1 700 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 < (1 + 𝐴))
1817gt0ne0d 11676 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ≠ 0)
198, 13, 18divcan1d 11893 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) = 𝐴)
2011recnd 11135 . . . . 5 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℂ)
2120mullidd 11125 . . . 4 (𝐴 ∈ ℝ → (1 · (1 + 𝐴)) = (1 + 𝐴))
2221adantr 480 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 · (1 + 𝐴)) = (1 + 𝐴))
237, 19, 223brtr4d 5118 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴)))
24 simpl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
2524, 12, 18redivcld 11944 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) ∈ ℝ)
26 ltmul1 11966 . . . 4 (((𝐴 / (1 + 𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((1 + 𝐴) ∈ ℝ ∧ 0 < (1 + 𝐴))) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴))))
279, 26mp3an2 1451 . . 3 (((𝐴 / (1 + 𝐴)) ∈ ℝ ∧ ((1 + 𝐴) ∈ ℝ ∧ 0 < (1 + 𝐴))) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴))))
2825, 12, 17, 27syl12anc 836 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴))))
2923, 28mpbird 257 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5086  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006   < clt 11141  cle 11142   / cdiv 11769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator