![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recp1lt1 | Structured version Visualization version GIF version |
Description: Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.) |
Ref | Expression |
---|---|
recp1lt1 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1 12105 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
2 | recn 11243 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | ax-1cn 11211 | . . . . . 6 ⊢ 1 ∈ ℂ | |
4 | addcom 11445 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
5 | 2, 3, 4 | sylancl 586 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) = (1 + 𝐴)) |
6 | 1, 5 | breqtrd 5174 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 < (1 + 𝐴)) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 < (1 + 𝐴)) |
8 | 2 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ) |
9 | 1re 11259 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
10 | readdcl 11236 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 + 𝐴) ∈ ℝ) | |
11 | 9, 10 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℝ) |
12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ∈ ℝ) |
13 | 12 | recnd 11287 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ∈ ℂ) |
14 | 0lt1 11783 | . . . . . . 7 ⊢ 0 < 1 | |
15 | addgtge0 11749 | . . . . . . 7 ⊢ (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 < 1 ∧ 0 ≤ 𝐴)) → 0 < (1 + 𝐴)) | |
16 | 14, 15 | mpanr1 703 | . . . . . 6 ⊢ (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 0 ≤ 𝐴) → 0 < (1 + 𝐴)) |
17 | 9, 16 | mpanl1 700 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 < (1 + 𝐴)) |
18 | 17 | gt0ne0d 11825 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ≠ 0) |
19 | 8, 13, 18 | divcan1d 12042 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) = 𝐴) |
20 | 11 | recnd 11287 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℂ) |
21 | 20 | mullidd 11277 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1 · (1 + 𝐴)) = (1 + 𝐴)) |
22 | 21 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 · (1 + 𝐴)) = (1 + 𝐴)) |
23 | 7, 19, 22 | 3brtr4d 5180 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴))) |
24 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
25 | 24, 12, 18 | redivcld 12093 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) ∈ ℝ) |
26 | ltmul1 12115 | . . . 4 ⊢ (((𝐴 / (1 + 𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((1 + 𝐴) ∈ ℝ ∧ 0 < (1 + 𝐴))) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴)))) | |
27 | 9, 26 | mp3an2 1448 | . . 3 ⊢ (((𝐴 / (1 + 𝐴)) ∈ ℝ ∧ ((1 + 𝐴) ∈ ℝ ∧ 0 < (1 + 𝐴))) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴)))) |
28 | 25, 12, 17, 27 | syl12anc 837 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴)))) |
29 | 23, 28 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 < clt 11293 ≤ cle 11294 / cdiv 11918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |