| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recp1lt1 | Structured version Visualization version GIF version | ||
| Description: Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.) |
| Ref | Expression |
|---|---|
| recp1lt1 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1 12081 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
| 2 | recn 11219 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 3 | ax-1cn 11187 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 4 | addcom 11421 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) = (1 + 𝐴)) |
| 6 | 1, 5 | breqtrd 5145 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 < (1 + 𝐴)) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 < (1 + 𝐴)) |
| 8 | 2 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ) |
| 9 | 1re 11235 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 10 | readdcl 11212 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 + 𝐴) ∈ ℝ) | |
| 11 | 9, 10 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℝ) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ∈ ℝ) |
| 13 | 12 | recnd 11263 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ∈ ℂ) |
| 14 | 0lt1 11759 | . . . . . . 7 ⊢ 0 < 1 | |
| 15 | addgtge0 11725 | . . . . . . 7 ⊢ (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 < 1 ∧ 0 ≤ 𝐴)) → 0 < (1 + 𝐴)) | |
| 16 | 14, 15 | mpanr1 703 | . . . . . 6 ⊢ (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 0 ≤ 𝐴) → 0 < (1 + 𝐴)) |
| 17 | 9, 16 | mpanl1 700 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 < (1 + 𝐴)) |
| 18 | 17 | gt0ne0d 11801 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 + 𝐴) ≠ 0) |
| 19 | 8, 13, 18 | divcan1d 12018 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) = 𝐴) |
| 20 | 11 | recnd 11263 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℂ) |
| 21 | 20 | mullidd 11253 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1 · (1 + 𝐴)) = (1 + 𝐴)) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 · (1 + 𝐴)) = (1 + 𝐴)) |
| 23 | 7, 19, 22 | 3brtr4d 5151 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴))) |
| 24 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
| 25 | 24, 12, 18 | redivcld 12069 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) ∈ ℝ) |
| 26 | ltmul1 12091 | . . . 4 ⊢ (((𝐴 / (1 + 𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((1 + 𝐴) ∈ ℝ ∧ 0 < (1 + 𝐴))) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴)))) | |
| 27 | 9, 26 | mp3an2 1451 | . . 3 ⊢ (((𝐴 / (1 + 𝐴)) ∈ ℝ ∧ ((1 + 𝐴) ∈ ℝ ∧ 0 < (1 + 𝐴))) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴)))) |
| 28 | 25, 12, 17, 27 | syl12anc 836 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴 / (1 + 𝐴)) < 1 ↔ ((𝐴 / (1 + 𝐴)) · (1 + 𝐴)) < (1 · (1 + 𝐴)))) |
| 29 | 23, 28 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℂcc 11127 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 < clt 11269 ≤ cle 11270 / cdiv 11894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |