MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem23 Structured version   Visualization version   GIF version

Theorem fin23lem23 10217
Description: Lemma for fin23lem22 10218. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
fin23lem23 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖)
Distinct variable group:   𝑖,𝑗,𝑆

Proof of Theorem fin23lem23
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fin23lem26 10216 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → ∃𝑗𝑆 (𝑗𝑆) ≈ 𝑖)
2 ensym 8925 . . . . . 6 ((𝑎𝑆) ≈ 𝑖𝑖 ≈ (𝑎𝑆))
3 entr 8928 . . . . . 6 (((𝑗𝑆) ≈ 𝑖𝑖 ≈ (𝑎𝑆)) → (𝑗𝑆) ≈ (𝑎𝑆))
42, 3sylan2 593 . . . . 5 (((𝑗𝑆) ≈ 𝑖 ∧ (𝑎𝑆) ≈ 𝑖) → (𝑗𝑆) ≈ (𝑎𝑆))
5 simpl 482 . . . . . . . . 9 ((𝑆 ⊆ ω ∧ (𝑗𝑆𝑎𝑆)) → 𝑆 ⊆ ω)
6 simprl 770 . . . . . . . . 9 ((𝑆 ⊆ ω ∧ (𝑗𝑆𝑎𝑆)) → 𝑗𝑆)
75, 6sseldd 3930 . . . . . . . 8 ((𝑆 ⊆ ω ∧ (𝑗𝑆𝑎𝑆)) → 𝑗 ∈ ω)
8 nnfi 9077 . . . . . . . . 9 (𝑗 ∈ ω → 𝑗 ∈ Fin)
9 inss1 4184 . . . . . . . . 9 (𝑗𝑆) ⊆ 𝑗
10 ssfi 9082 . . . . . . . . 9 ((𝑗 ∈ Fin ∧ (𝑗𝑆) ⊆ 𝑗) → (𝑗𝑆) ∈ Fin)
118, 9, 10sylancl 586 . . . . . . . 8 (𝑗 ∈ ω → (𝑗𝑆) ∈ Fin)
127, 11syl 17 . . . . . . 7 ((𝑆 ⊆ ω ∧ (𝑗𝑆𝑎𝑆)) → (𝑗𝑆) ∈ Fin)
13 simprr 772 . . . . . . . . 9 ((𝑆 ⊆ ω ∧ (𝑗𝑆𝑎𝑆)) → 𝑎𝑆)
145, 13sseldd 3930 . . . . . . . 8 ((𝑆 ⊆ ω ∧ (𝑗𝑆𝑎𝑆)) → 𝑎 ∈ ω)
15 nnfi 9077 . . . . . . . . 9 (𝑎 ∈ ω → 𝑎 ∈ Fin)
16 inss1 4184 . . . . . . . . 9 (𝑎𝑆) ⊆ 𝑎
17 ssfi 9082 . . . . . . . . 9 ((𝑎 ∈ Fin ∧ (𝑎𝑆) ⊆ 𝑎) → (𝑎𝑆) ∈ Fin)
1815, 16, 17sylancl 586 . . . . . . . 8 (𝑎 ∈ ω → (𝑎𝑆) ∈ Fin)
1914, 18syl 17 . . . . . . 7 ((𝑆 ⊆ ω ∧ (𝑗𝑆𝑎𝑆)) → (𝑎𝑆) ∈ Fin)
20 nnord 7804 . . . . . . . . . 10 (𝑗 ∈ ω → Ord 𝑗)
21 nnord 7804 . . . . . . . . . 10 (𝑎 ∈ ω → Ord 𝑎)
22 ordtri2or2 6407 . . . . . . . . . 10 ((Ord 𝑗 ∧ Ord 𝑎) → (𝑗𝑎𝑎𝑗))
2320, 21, 22syl2an 596 . . . . . . . . 9 ((𝑗 ∈ ω ∧ 𝑎 ∈ ω) → (𝑗𝑎𝑎𝑗))
247, 14, 23syl2anc 584 . . . . . . . 8 ((𝑆 ⊆ ω ∧ (𝑗𝑆𝑎𝑆)) → (𝑗𝑎𝑎𝑗))
25 ssrin 4189 . . . . . . . . 9 (𝑗𝑎 → (𝑗𝑆) ⊆ (𝑎𝑆))
26 ssrin 4189 . . . . . . . . 9 (𝑎𝑗 → (𝑎𝑆) ⊆ (𝑗𝑆))
2725, 26orim12i 908 . . . . . . . 8 ((𝑗𝑎𝑎𝑗) → ((𝑗𝑆) ⊆ (𝑎𝑆) ∨ (𝑎𝑆) ⊆ (𝑗𝑆)))
2824, 27syl 17 . . . . . . 7 ((𝑆 ⊆ ω ∧ (𝑗𝑆𝑎𝑆)) → ((𝑗𝑆) ⊆ (𝑎𝑆) ∨ (𝑎𝑆) ⊆ (𝑗𝑆)))
29 fin23lem25 10215 . . . . . . 7 (((𝑗𝑆) ∈ Fin ∧ (𝑎𝑆) ∈ Fin ∧ ((𝑗𝑆) ⊆ (𝑎𝑆) ∨ (𝑎𝑆) ⊆ (𝑗𝑆))) → ((𝑗𝑆) ≈ (𝑎𝑆) ↔ (𝑗𝑆) = (𝑎𝑆)))
3012, 19, 28, 29syl3anc 1373 . . . . . 6 ((𝑆 ⊆ ω ∧ (𝑗𝑆𝑎𝑆)) → ((𝑗𝑆) ≈ (𝑎𝑆) ↔ (𝑗𝑆) = (𝑎𝑆)))
31 ordom 7806 . . . . . . 7 Ord ω
32 fin23lem24 10213 . . . . . . 7 (((Ord ω ∧ 𝑆 ⊆ ω) ∧ (𝑗𝑆𝑎𝑆)) → ((𝑗𝑆) = (𝑎𝑆) ↔ 𝑗 = 𝑎))
3331, 32mpanl1 700 . . . . . 6 ((𝑆 ⊆ ω ∧ (𝑗𝑆𝑎𝑆)) → ((𝑗𝑆) = (𝑎𝑆) ↔ 𝑗 = 𝑎))
3430, 33bitrd 279 . . . . 5 ((𝑆 ⊆ ω ∧ (𝑗𝑆𝑎𝑆)) → ((𝑗𝑆) ≈ (𝑎𝑆) ↔ 𝑗 = 𝑎))
354, 34imbitrid 244 . . . 4 ((𝑆 ⊆ ω ∧ (𝑗𝑆𝑎𝑆)) → (((𝑗𝑆) ≈ 𝑖 ∧ (𝑎𝑆) ≈ 𝑖) → 𝑗 = 𝑎))
3635ralrimivva 3175 . . 3 (𝑆 ⊆ ω → ∀𝑗𝑆𝑎𝑆 (((𝑗𝑆) ≈ 𝑖 ∧ (𝑎𝑆) ≈ 𝑖) → 𝑗 = 𝑎))
3736ad2antrr 726 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → ∀𝑗𝑆𝑎𝑆 (((𝑗𝑆) ≈ 𝑖 ∧ (𝑎𝑆) ≈ 𝑖) → 𝑗 = 𝑎))
38 ineq1 4160 . . . 4 (𝑗 = 𝑎 → (𝑗𝑆) = (𝑎𝑆))
3938breq1d 5099 . . 3 (𝑗 = 𝑎 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑎𝑆) ≈ 𝑖))
4039reu4 3685 . 2 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖 ↔ (∃𝑗𝑆 (𝑗𝑆) ≈ 𝑖 ∧ ∀𝑗𝑆𝑎𝑆 (((𝑗𝑆) ≈ 𝑖 ∧ (𝑎𝑆) ≈ 𝑖) → 𝑗 = 𝑎)))
411, 37, 40sylanbrc 583 1 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  cin 3896  wss 3897   class class class wbr 5089  Ord word 6305  ωcom 7796  cen 8866  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873
This theorem is referenced by:  fin23lem22  10218  fin23lem27  10219
  Copyright terms: Public domain W3C validator