MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzp1b Structured version   Visualization version   GIF version

Theorem elfzp1b 12987
Description: An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
elfzp1b ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁)))

Proof of Theorem elfzp1b
StepHypRef Expression
1 peano2z 12026 . . . 4 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ ℤ)
2 1z 12015 . . . . 5 1 ∈ ℤ
3 fzsubel 12946 . . . . . 6 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 + 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
42, 3mpanl1 698 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝐾 + 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
52, 4mpanr2 702 . . . 4 ((𝑁 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
61, 5sylan2 594 . . 3 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
76ancoms 461 . 2 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
8 zcn 11989 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
9 ax-1cn 10598 . . . . 5 1 ∈ ℂ
10 pncan 10895 . . . . 5 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
118, 9, 10sylancl 588 . . . 4 (𝐾 ∈ ℤ → ((𝐾 + 1) − 1) = 𝐾)
12 1m1e0 11712 . . . . . 6 (1 − 1) = 0
1312oveq1i 7169 . . . . 5 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1413a1i 11 . . . 4 (𝐾 ∈ ℤ → ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1)))
1511, 14eleq12d 2910 . . 3 (𝐾 ∈ ℤ → (((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1)) ↔ 𝐾 ∈ (0...(𝑁 − 1))))
1615adantr 483 . 2 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1)) ↔ 𝐾 ∈ (0...(𝑁 − 1))))
177, 16bitr2d 282 1 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   + caddc 10543  cmin 10873  cz 11984  ...cfz 12895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-fz 12896
This theorem is referenced by:  numclwlk2lem2f  28159
  Copyright terms: Public domain W3C validator