MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzp1b Structured version   Visualization version   GIF version

Theorem elfzp1b 13519
Description: An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
elfzp1b ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁)))

Proof of Theorem elfzp1b
StepHypRef Expression
1 peano2z 12545 . . . 4 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ ℤ)
2 1z 12534 . . . . 5 1 ∈ ℤ
3 fzsubel 13478 . . . . . 6 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 + 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
42, 3mpanl1 699 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝐾 + 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
52, 4mpanr2 703 . . . 4 ((𝑁 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
61, 5sylan2 594 . . 3 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
76ancoms 460 . 2 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
8 zcn 12505 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
9 ax-1cn 11110 . . . . 5 1 ∈ ℂ
10 pncan 11408 . . . . 5 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
118, 9, 10sylancl 587 . . . 4 (𝐾 ∈ ℤ → ((𝐾 + 1) − 1) = 𝐾)
12 1m1e0 12226 . . . . . 6 (1 − 1) = 0
1312oveq1i 7368 . . . . 5 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1413a1i 11 . . . 4 (𝐾 ∈ ℤ → ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1)))
1511, 14eleq12d 2832 . . 3 (𝐾 ∈ ℤ → (((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1)) ↔ 𝐾 ∈ (0...(𝑁 − 1))))
1615adantr 482 . 2 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1)) ↔ 𝐾 ∈ (0...(𝑁 − 1))))
177, 16bitr2d 280 1 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  (class class class)co 7358  cc 11050  0cc0 11052  1c1 11053   + caddc 11055  cmin 11386  cz 12500  ...cfz 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-n0 12415  df-z 12501  df-fz 13426
This theorem is referenced by:  numclwlk2lem2f  29324
  Copyright terms: Public domain W3C validator