Proof of Theorem opsqrlem1
Step | Hyp | Ref
| Expression |
1 | | opsqrlem1.1 |
. . . . . . . 8
⊢ 𝑇 ∈ HrmOp |
2 | | hmopf 29435 |
. . . . . . . 8
⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶
ℋ) |
3 | 1, 2 | ax-mp 5 |
. . . . . . 7
⊢ 𝑇: ℋ⟶
ℋ |
4 | | nmopge0 29472 |
. . . . . . 7
⊢ (𝑇: ℋ⟶ ℋ →
0 ≤ (normop‘𝑇)) |
5 | 3, 4 | ax-mp 5 |
. . . . . 6
⊢ 0 ≤
(normop‘𝑇) |
6 | | opsqrlem1.2 |
. . . . . . 7
⊢
(normop‘𝑇) ∈ ℝ |
7 | 6 | sqrtcli 14595 |
. . . . . 6
⊢ (0 ≤
(normop‘𝑇)
→ (√‘(normop‘𝑇)) ∈ ℝ) |
8 | 5, 7 | ax-mp 5 |
. . . . 5
⊢
(√‘(normop‘𝑇)) ∈ ℝ |
9 | | hmopm 29582 |
. . . . 5
⊢
(((√‘(normop‘𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) →
((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp) |
10 | 8, 9 | mpan 677 |
. . . 4
⊢ (𝑢 ∈ HrmOp →
((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp) |
11 | 10 | ad2antlr 714 |
. . 3
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) →
((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp) |
12 | 6 | sqrtge0i 14600 |
. . . . . . 7
⊢ (0 ≤
(normop‘𝑇)
→ 0 ≤ (√‘(normop‘𝑇))) |
13 | 5, 12 | ax-mp 5 |
. . . . . 6
⊢ 0 ≤
(√‘(normop‘𝑇)) |
14 | | leopmuli 29694 |
. . . . . 6
⊢
((((√‘(normop‘𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) ∧ (0 ≤
(√‘(normop‘𝑇)) ∧ 0hop ≤op
𝑢)) → 0hop
≤op ((√‘(normop‘𝑇)) ·op 𝑢)) |
15 | 13, 14 | mpanr1 690 |
. . . . 5
⊢
((((√‘(normop‘𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) ∧ 0hop
≤op 𝑢) →
0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢)) |
16 | 8, 15 | mpanl1 687 |
. . . 4
⊢ ((𝑢 ∈ HrmOp ∧
0hop ≤op 𝑢) → 0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢)) |
17 | 16 | ad2ant2lr 735 |
. . 3
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) → 0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢)) |
18 | | hmopf 29435 |
. . . . . . . 8
⊢ (𝑢 ∈ HrmOp → 𝑢: ℋ⟶
ℋ) |
19 | 8 | recni 10456 |
. . . . . . . . . 10
⊢
(√‘(normop‘𝑇)) ∈ ℂ |
20 | | homulcl 29320 |
. . . . . . . . . 10
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧ 𝑢: ℋ⟶ ℋ) →
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶
ℋ) |
21 | 19, 20 | mpan 677 |
. . . . . . . . 9
⊢ (𝑢: ℋ⟶ ℋ →
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶
ℋ) |
22 | 18, 21 | syl 17 |
. . . . . . . 8
⊢ (𝑢 ∈ HrmOp →
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶
ℋ) |
23 | | homco1 29362 |
. . . . . . . . 9
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧ 𝑢: ℋ⟶ ℋ ∧
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶ ℋ)
→ (((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)))) |
24 | 19, 23 | mp3an1 1427 |
. . . . . . . 8
⊢ ((𝑢: ℋ⟶ ℋ ∧
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶ ℋ)
→ (((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)))) |
25 | 18, 22, 24 | syl2anc 576 |
. . . . . . 7
⊢ (𝑢 ∈ HrmOp →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)))) |
26 | | hmoplin 29503 |
. . . . . . . . 9
⊢ (𝑢 ∈ HrmOp → 𝑢 ∈ LinOp) |
27 | | homco2 29538 |
. . . . . . . . . 10
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧ 𝑢 ∈ LinOp ∧ 𝑢: ℋ⟶ ℋ) → (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) |
28 | 19, 27 | mp3an1 1427 |
. . . . . . . . 9
⊢ ((𝑢 ∈ LinOp ∧ 𝑢: ℋ⟶ ℋ)
→ (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) |
29 | 26, 18, 28 | syl2anc 576 |
. . . . . . . 8
⊢ (𝑢 ∈ HrmOp → (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) |
30 | 29 | oveq2d 6994 |
. . . . . . 7
⊢ (𝑢 ∈ HrmOp →
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢))) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) |
31 | 6 | sqrtthi 14594 |
. . . . . . . . . 10
⊢ (0 ≤
(normop‘𝑇)
→ ((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) = (normop‘𝑇)) |
32 | 5, 31 | ax-mp 5 |
. . . . . . . . 9
⊢
((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) = (normop‘𝑇) |
33 | 32 | oveq1i 6988 |
. . . . . . . 8
⊢
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) = ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) |
34 | | fco 6363 |
. . . . . . . . . 10
⊢ ((𝑢: ℋ⟶ ℋ ∧
𝑢: ℋ⟶ ℋ)
→ (𝑢 ∘ 𝑢): ℋ⟶
ℋ) |
35 | 18, 18, 34 | syl2anc 576 |
. . . . . . . . 9
⊢ (𝑢 ∈ HrmOp → (𝑢 ∘ 𝑢): ℋ⟶ ℋ) |
36 | | homulass 29363 |
. . . . . . . . . 10
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧
(√‘(normop‘𝑇)) ∈ ℂ ∧ (𝑢 ∘ 𝑢): ℋ⟶ ℋ) →
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) |
37 | 19, 19, 36 | mp3an12 1430 |
. . . . . . . . 9
⊢ ((𝑢 ∘ 𝑢): ℋ⟶ ℋ →
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) |
38 | 35, 37 | syl 17 |
. . . . . . . 8
⊢ (𝑢 ∈ HrmOp →
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) |
39 | 33, 38 | syl5reqr 2829 |
. . . . . . 7
⊢ (𝑢 ∈ HrmOp →
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) = ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢))) |
40 | 25, 30, 39 | 3eqtrd 2818 |
. . . . . 6
⊢ (𝑢 ∈ HrmOp →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((normop‘𝑇) ·op (𝑢 ∘ 𝑢))) |
41 | 40 | ad2antlr 714 |
. . . . 5
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧
(𝑢 ∘ 𝑢) = 𝑅) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((normop‘𝑇) ·op (𝑢 ∘ 𝑢))) |
42 | | id 22 |
. . . . . . . . 9
⊢ ((𝑢 ∘ 𝑢) = 𝑅 → (𝑢 ∘ 𝑢) = 𝑅) |
43 | | opsqrlem1.4 |
. . . . . . . . 9
⊢ 𝑅 = ((1 /
(normop‘𝑇)) ·op 𝑇) |
44 | 42, 43 | syl6eq 2830 |
. . . . . . . 8
⊢ ((𝑢 ∘ 𝑢) = 𝑅 → (𝑢 ∘ 𝑢) = ((1 / (normop‘𝑇)) ·op
𝑇)) |
45 | 44 | oveq2d 6994 |
. . . . . . 7
⊢ ((𝑢 ∘ 𝑢) = 𝑅 → ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) |
46 | | hmoplin 29503 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) |
47 | 1, 46 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 𝑇 ∈ LinOp |
48 | | nmlnopne0 29560 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ LinOp →
((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop )) |
49 | 47, 48 | ax-mp 5 |
. . . . . . . . . 10
⊢
((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop ) |
50 | 6 | recni 10456 |
. . . . . . . . . . 11
⊢
(normop‘𝑇) ∈ ℂ |
51 | 50 | recidzi 11170 |
. . . . . . . . . 10
⊢
((normop‘𝑇) ≠ 0 →
((normop‘𝑇) · (1 /
(normop‘𝑇))) = 1) |
52 | 49, 51 | sylbir 227 |
. . . . . . . . 9
⊢ (𝑇 ≠ 0hop →
((normop‘𝑇) · (1 /
(normop‘𝑇))) = 1) |
53 | 52 | oveq1d 6993 |
. . . . . . . 8
⊢ (𝑇 ≠ 0hop →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) = (1
·op 𝑇)) |
54 | 6 | rerecclzi 11207 |
. . . . . . . . . . 11
⊢
((normop‘𝑇) ≠ 0 → (1 /
(normop‘𝑇)) ∈ ℝ) |
55 | 49, 54 | sylbir 227 |
. . . . . . . . . 10
⊢ (𝑇 ≠ 0hop → (1
/ (normop‘𝑇)) ∈ ℝ) |
56 | 55 | recnd 10470 |
. . . . . . . . 9
⊢ (𝑇 ≠ 0hop → (1
/ (normop‘𝑇)) ∈ ℂ) |
57 | | homulass 29363 |
. . . . . . . . . 10
⊢
(((normop‘𝑇) ∈ ℂ ∧ (1 /
(normop‘𝑇)) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) |
58 | 50, 3, 57 | mp3an13 1431 |
. . . . . . . . 9
⊢ ((1 /
(normop‘𝑇)) ∈ ℂ →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) |
59 | 56, 58 | syl 17 |
. . . . . . . 8
⊢ (𝑇 ≠ 0hop →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) |
60 | | homulid2 29361 |
. . . . . . . . 9
⊢ (𝑇: ℋ⟶ ℋ →
(1 ·op 𝑇) = 𝑇) |
61 | 3, 60 | mp1i 13 |
. . . . . . . 8
⊢ (𝑇 ≠ 0hop → (1
·op 𝑇) = 𝑇) |
62 | 53, 59, 61 | 3eqtr3d 2822 |
. . . . . . 7
⊢ (𝑇 ≠ 0hop →
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇)) = 𝑇) |
63 | 45, 62 | sylan9eqr 2836 |
. . . . . 6
⊢ ((𝑇 ≠ 0hop ∧
(𝑢 ∘ 𝑢) = 𝑅) → ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) = 𝑇) |
64 | 63 | adantlr 702 |
. . . . 5
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧
(𝑢 ∘ 𝑢) = 𝑅) → ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) = 𝑇) |
65 | 41, 64 | eqtrd 2814 |
. . . 4
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧
(𝑢 ∘ 𝑢) = 𝑅) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇) |
66 | 65 | adantrl 703 |
. . 3
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇) |
67 | | breq2 4934 |
. . . . 5
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → ( 0hop
≤op 𝑣 ↔
0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢))) |
68 | | coeq1 5579 |
. . . . . . 7
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → (𝑣 ∘ 𝑣) =
(((√‘(normop‘𝑇)) ·op 𝑢) ∘ 𝑣)) |
69 | | coeq2 5580 |
. . . . . . 7
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘ 𝑣) =
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢))) |
70 | 68, 69 | eqtrd 2814 |
. . . . . 6
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → (𝑣 ∘ 𝑣) =
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢))) |
71 | 70 | eqeq1d 2780 |
. . . . 5
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → ((𝑣 ∘ 𝑣) = 𝑇 ↔
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇)) |
72 | 67, 71 | anbi12d 621 |
. . . 4
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → (( 0hop
≤op 𝑣 ∧
(𝑣 ∘ 𝑣) = 𝑇) ↔ ( 0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢) ∧
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇))) |
73 | 72 | rspcev 3535 |
. . 3
⊢
((((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp ∧ (
0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢) ∧
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇)) → ∃𝑣 ∈ HrmOp ( 0hop
≤op 𝑣 ∧
(𝑣 ∘ 𝑣) = 𝑇)) |
74 | 11, 17, 66, 73 | syl12anc 824 |
. 2
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) → ∃𝑣 ∈ HrmOp ( 0hop
≤op 𝑣 ∧
(𝑣 ∘ 𝑣) = 𝑇)) |
75 | | opsqrlem1.5 |
. 2
⊢ (𝑇 ≠ 0hop →
∃𝑢 ∈ HrmOp (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) |
76 | 74, 75 | r19.29a 3234 |
1
⊢ (𝑇 ≠ 0hop →
∃𝑣 ∈ HrmOp (
0hop ≤op 𝑣 ∧ (𝑣 ∘ 𝑣) = 𝑇)) |