Proof of Theorem opsqrlem1
Step | Hyp | Ref
| Expression |
1 | | opsqrlem1.1 |
. . . . . . . 8
⊢ 𝑇 ∈ HrmOp |
2 | | hmopf 30236 |
. . . . . . . 8
⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶
ℋ) |
3 | 1, 2 | ax-mp 5 |
. . . . . . 7
⊢ 𝑇: ℋ⟶
ℋ |
4 | | nmopge0 30273 |
. . . . . . 7
⊢ (𝑇: ℋ⟶ ℋ →
0 ≤ (normop‘𝑇)) |
5 | 3, 4 | ax-mp 5 |
. . . . . 6
⊢ 0 ≤
(normop‘𝑇) |
6 | | opsqrlem1.2 |
. . . . . . 7
⊢
(normop‘𝑇) ∈ ℝ |
7 | 6 | sqrtcli 15083 |
. . . . . 6
⊢ (0 ≤
(normop‘𝑇)
→ (√‘(normop‘𝑇)) ∈ ℝ) |
8 | 5, 7 | ax-mp 5 |
. . . . 5
⊢
(√‘(normop‘𝑇)) ∈ ℝ |
9 | | hmopm 30383 |
. . . . 5
⊢
(((√‘(normop‘𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) →
((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp) |
10 | 8, 9 | mpan 687 |
. . . 4
⊢ (𝑢 ∈ HrmOp →
((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp) |
11 | 10 | ad2antlr 724 |
. . 3
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) →
((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp) |
12 | 6 | sqrtge0i 15088 |
. . . . . . 7
⊢ (0 ≤
(normop‘𝑇)
→ 0 ≤ (√‘(normop‘𝑇))) |
13 | 5, 12 | ax-mp 5 |
. . . . . 6
⊢ 0 ≤
(√‘(normop‘𝑇)) |
14 | | leopmuli 30495 |
. . . . . 6
⊢
((((√‘(normop‘𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) ∧ (0 ≤
(√‘(normop‘𝑇)) ∧ 0hop ≤op
𝑢)) → 0hop
≤op ((√‘(normop‘𝑇)) ·op 𝑢)) |
15 | 13, 14 | mpanr1 700 |
. . . . 5
⊢
((((√‘(normop‘𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) ∧ 0hop
≤op 𝑢) →
0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢)) |
16 | 8, 15 | mpanl1 697 |
. . . 4
⊢ ((𝑢 ∈ HrmOp ∧
0hop ≤op 𝑢) → 0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢)) |
17 | 16 | ad2ant2lr 745 |
. . 3
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) → 0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢)) |
18 | | hmopf 30236 |
. . . . . . . 8
⊢ (𝑢 ∈ HrmOp → 𝑢: ℋ⟶
ℋ) |
19 | 8 | recni 10989 |
. . . . . . . . 9
⊢
(√‘(normop‘𝑇)) ∈ ℂ |
20 | | homulcl 30121 |
. . . . . . . . 9
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧ 𝑢: ℋ⟶ ℋ) →
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶
ℋ) |
21 | 19, 20 | mpan 687 |
. . . . . . . 8
⊢ (𝑢: ℋ⟶ ℋ →
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶
ℋ) |
22 | | homco1 30163 |
. . . . . . . . 9
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧ 𝑢: ℋ⟶ ℋ ∧
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶ ℋ)
→ (((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)))) |
23 | 19, 22 | mp3an1 1447 |
. . . . . . . 8
⊢ ((𝑢: ℋ⟶ ℋ ∧
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶ ℋ)
→ (((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)))) |
24 | 18, 21, 23 | syl2anc2 585 |
. . . . . . 7
⊢ (𝑢 ∈ HrmOp →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)))) |
25 | | hmoplin 30304 |
. . . . . . . . 9
⊢ (𝑢 ∈ HrmOp → 𝑢 ∈ LinOp) |
26 | | homco2 30339 |
. . . . . . . . . 10
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧ 𝑢 ∈ LinOp ∧ 𝑢: ℋ⟶ ℋ) → (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) |
27 | 19, 26 | mp3an1 1447 |
. . . . . . . . 9
⊢ ((𝑢 ∈ LinOp ∧ 𝑢: ℋ⟶ ℋ)
→ (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) |
28 | 25, 18, 27 | syl2anc 584 |
. . . . . . . 8
⊢ (𝑢 ∈ HrmOp → (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) |
29 | 28 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑢 ∈ HrmOp →
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢))) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) |
30 | | fco 6624 |
. . . . . . . . . 10
⊢ ((𝑢: ℋ⟶ ℋ ∧
𝑢: ℋ⟶ ℋ)
→ (𝑢 ∘ 𝑢): ℋ⟶
ℋ) |
31 | 18, 18, 30 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝑢 ∈ HrmOp → (𝑢 ∘ 𝑢): ℋ⟶ ℋ) |
32 | | homulass 30164 |
. . . . . . . . . 10
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧
(√‘(normop‘𝑇)) ∈ ℂ ∧ (𝑢 ∘ 𝑢): ℋ⟶ ℋ) →
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) |
33 | 19, 19, 32 | mp3an12 1450 |
. . . . . . . . 9
⊢ ((𝑢 ∘ 𝑢): ℋ⟶ ℋ →
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) |
34 | 31, 33 | syl 17 |
. . . . . . . 8
⊢ (𝑢 ∈ HrmOp →
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) |
35 | 6 | sqrtthi 15082 |
. . . . . . . . . 10
⊢ (0 ≤
(normop‘𝑇)
→ ((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) = (normop‘𝑇)) |
36 | 5, 35 | ax-mp 5 |
. . . . . . . . 9
⊢
((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) = (normop‘𝑇) |
37 | 36 | oveq1i 7285 |
. . . . . . . 8
⊢
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) = ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) |
38 | 34, 37 | eqtr3di 2793 |
. . . . . . 7
⊢ (𝑢 ∈ HrmOp →
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) = ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢))) |
39 | 24, 29, 38 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝑢 ∈ HrmOp →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((normop‘𝑇) ·op (𝑢 ∘ 𝑢))) |
40 | 39 | ad2antlr 724 |
. . . . 5
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧
(𝑢 ∘ 𝑢) = 𝑅) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((normop‘𝑇) ·op (𝑢 ∘ 𝑢))) |
41 | | id 22 |
. . . . . . . . 9
⊢ ((𝑢 ∘ 𝑢) = 𝑅 → (𝑢 ∘ 𝑢) = 𝑅) |
42 | | opsqrlem1.4 |
. . . . . . . . 9
⊢ 𝑅 = ((1 /
(normop‘𝑇)) ·op 𝑇) |
43 | 41, 42 | eqtrdi 2794 |
. . . . . . . 8
⊢ ((𝑢 ∘ 𝑢) = 𝑅 → (𝑢 ∘ 𝑢) = ((1 / (normop‘𝑇)) ·op
𝑇)) |
44 | 43 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝑢 ∘ 𝑢) = 𝑅 → ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) |
45 | | hmoplin 30304 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) |
46 | 1, 45 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 𝑇 ∈ LinOp |
47 | | nmlnopne0 30361 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ LinOp →
((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop )) |
48 | 46, 47 | ax-mp 5 |
. . . . . . . . . 10
⊢
((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop ) |
49 | 6 | recni 10989 |
. . . . . . . . . . 11
⊢
(normop‘𝑇) ∈ ℂ |
50 | 49 | recidzi 11702 |
. . . . . . . . . 10
⊢
((normop‘𝑇) ≠ 0 →
((normop‘𝑇) · (1 /
(normop‘𝑇))) = 1) |
51 | 48, 50 | sylbir 234 |
. . . . . . . . 9
⊢ (𝑇 ≠ 0hop →
((normop‘𝑇) · (1 /
(normop‘𝑇))) = 1) |
52 | 51 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑇 ≠ 0hop →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) = (1
·op 𝑇)) |
53 | 6 | rerecclzi 11739 |
. . . . . . . . . . 11
⊢
((normop‘𝑇) ≠ 0 → (1 /
(normop‘𝑇)) ∈ ℝ) |
54 | 48, 53 | sylbir 234 |
. . . . . . . . . 10
⊢ (𝑇 ≠ 0hop → (1
/ (normop‘𝑇)) ∈ ℝ) |
55 | 54 | recnd 11003 |
. . . . . . . . 9
⊢ (𝑇 ≠ 0hop → (1
/ (normop‘𝑇)) ∈ ℂ) |
56 | | homulass 30164 |
. . . . . . . . . 10
⊢
(((normop‘𝑇) ∈ ℂ ∧ (1 /
(normop‘𝑇)) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) |
57 | 49, 3, 56 | mp3an13 1451 |
. . . . . . . . 9
⊢ ((1 /
(normop‘𝑇)) ∈ ℂ →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) |
58 | 55, 57 | syl 17 |
. . . . . . . 8
⊢ (𝑇 ≠ 0hop →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) |
59 | | homulid2 30162 |
. . . . . . . . 9
⊢ (𝑇: ℋ⟶ ℋ →
(1 ·op 𝑇) = 𝑇) |
60 | 3, 59 | mp1i 13 |
. . . . . . . 8
⊢ (𝑇 ≠ 0hop → (1
·op 𝑇) = 𝑇) |
61 | 52, 58, 60 | 3eqtr3d 2786 |
. . . . . . 7
⊢ (𝑇 ≠ 0hop →
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇)) = 𝑇) |
62 | 44, 61 | sylan9eqr 2800 |
. . . . . 6
⊢ ((𝑇 ≠ 0hop ∧
(𝑢 ∘ 𝑢) = 𝑅) → ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) = 𝑇) |
63 | 62 | adantlr 712 |
. . . . 5
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧
(𝑢 ∘ 𝑢) = 𝑅) → ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) = 𝑇) |
64 | 40, 63 | eqtrd 2778 |
. . . 4
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧
(𝑢 ∘ 𝑢) = 𝑅) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇) |
65 | 64 | adantrl 713 |
. . 3
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇) |
66 | | breq2 5078 |
. . . . 5
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → ( 0hop
≤op 𝑣 ↔
0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢))) |
67 | | coeq1 5766 |
. . . . . . 7
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → (𝑣 ∘ 𝑣) =
(((√‘(normop‘𝑇)) ·op 𝑢) ∘ 𝑣)) |
68 | | coeq2 5767 |
. . . . . . 7
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘ 𝑣) =
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢))) |
69 | 67, 68 | eqtrd 2778 |
. . . . . 6
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → (𝑣 ∘ 𝑣) =
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢))) |
70 | 69 | eqeq1d 2740 |
. . . . 5
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → ((𝑣 ∘ 𝑣) = 𝑇 ↔
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇)) |
71 | 66, 70 | anbi12d 631 |
. . . 4
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → (( 0hop
≤op 𝑣 ∧
(𝑣 ∘ 𝑣) = 𝑇) ↔ ( 0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢) ∧
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇))) |
72 | 71 | rspcev 3561 |
. . 3
⊢
((((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp ∧ (
0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢) ∧
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇)) → ∃𝑣 ∈ HrmOp ( 0hop
≤op 𝑣 ∧
(𝑣 ∘ 𝑣) = 𝑇)) |
73 | 11, 17, 65, 72 | syl12anc 834 |
. 2
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) → ∃𝑣 ∈ HrmOp ( 0hop
≤op 𝑣 ∧
(𝑣 ∘ 𝑣) = 𝑇)) |
74 | | opsqrlem1.5 |
. 2
⊢ (𝑇 ≠ 0hop →
∃𝑢 ∈ HrmOp (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) |
75 | 73, 74 | r19.29a 3218 |
1
⊢ (𝑇 ≠ 0hop →
∃𝑣 ∈ HrmOp (
0hop ≤op 𝑣 ∧ (𝑣 ∘ 𝑣) = 𝑇)) |