Proof of Theorem opsqrlem1
| Step | Hyp | Ref
| Expression |
| 1 | | opsqrlem1.1 |
. . . . . . . 8
⊢ 𝑇 ∈ HrmOp |
| 2 | | hmopf 31860 |
. . . . . . . 8
⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶
ℋ) |
| 3 | 1, 2 | ax-mp 5 |
. . . . . . 7
⊢ 𝑇: ℋ⟶
ℋ |
| 4 | | nmopge0 31897 |
. . . . . . 7
⊢ (𝑇: ℋ⟶ ℋ →
0 ≤ (normop‘𝑇)) |
| 5 | 3, 4 | ax-mp 5 |
. . . . . 6
⊢ 0 ≤
(normop‘𝑇) |
| 6 | | opsqrlem1.2 |
. . . . . . 7
⊢
(normop‘𝑇) ∈ ℝ |
| 7 | 6 | sqrtcli 15395 |
. . . . . 6
⊢ (0 ≤
(normop‘𝑇)
→ (√‘(normop‘𝑇)) ∈ ℝ) |
| 8 | 5, 7 | ax-mp 5 |
. . . . 5
⊢
(√‘(normop‘𝑇)) ∈ ℝ |
| 9 | | hmopm 32007 |
. . . . 5
⊢
(((√‘(normop‘𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) →
((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp) |
| 10 | 8, 9 | mpan 690 |
. . . 4
⊢ (𝑢 ∈ HrmOp →
((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp) |
| 11 | 10 | ad2antlr 727 |
. . 3
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) →
((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp) |
| 12 | 6 | sqrtge0i 15400 |
. . . . . . 7
⊢ (0 ≤
(normop‘𝑇)
→ 0 ≤ (√‘(normop‘𝑇))) |
| 13 | 5, 12 | ax-mp 5 |
. . . . . 6
⊢ 0 ≤
(√‘(normop‘𝑇)) |
| 14 | | leopmuli 32119 |
. . . . . 6
⊢
((((√‘(normop‘𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) ∧ (0 ≤
(√‘(normop‘𝑇)) ∧ 0hop ≤op
𝑢)) → 0hop
≤op ((√‘(normop‘𝑇)) ·op 𝑢)) |
| 15 | 13, 14 | mpanr1 703 |
. . . . 5
⊢
((((√‘(normop‘𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) ∧ 0hop
≤op 𝑢) →
0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢)) |
| 16 | 8, 15 | mpanl1 700 |
. . . 4
⊢ ((𝑢 ∈ HrmOp ∧
0hop ≤op 𝑢) → 0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢)) |
| 17 | 16 | ad2ant2lr 748 |
. . 3
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) → 0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢)) |
| 18 | | hmopf 31860 |
. . . . . . . 8
⊢ (𝑢 ∈ HrmOp → 𝑢: ℋ⟶
ℋ) |
| 19 | 8 | recni 11254 |
. . . . . . . . 9
⊢
(√‘(normop‘𝑇)) ∈ ℂ |
| 20 | | homulcl 31745 |
. . . . . . . . 9
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧ 𝑢: ℋ⟶ ℋ) →
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶
ℋ) |
| 21 | 19, 20 | mpan 690 |
. . . . . . . 8
⊢ (𝑢: ℋ⟶ ℋ →
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶
ℋ) |
| 22 | | homco1 31787 |
. . . . . . . . 9
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧ 𝑢: ℋ⟶ ℋ ∧
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶ ℋ)
→ (((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)))) |
| 23 | 19, 22 | mp3an1 1450 |
. . . . . . . 8
⊢ ((𝑢: ℋ⟶ ℋ ∧
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶ ℋ)
→ (((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)))) |
| 24 | 18, 21, 23 | syl2anc2 585 |
. . . . . . 7
⊢ (𝑢 ∈ HrmOp →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)))) |
| 25 | | hmoplin 31928 |
. . . . . . . . 9
⊢ (𝑢 ∈ HrmOp → 𝑢 ∈ LinOp) |
| 26 | | homco2 31963 |
. . . . . . . . . 10
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧ 𝑢 ∈ LinOp ∧ 𝑢: ℋ⟶ ℋ) → (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) |
| 27 | 19, 26 | mp3an1 1450 |
. . . . . . . . 9
⊢ ((𝑢 ∈ LinOp ∧ 𝑢: ℋ⟶ ℋ)
→ (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) |
| 28 | 25, 18, 27 | syl2anc 584 |
. . . . . . . 8
⊢ (𝑢 ∈ HrmOp → (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) |
| 29 | 28 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑢 ∈ HrmOp →
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢))) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) |
| 30 | | fco 6735 |
. . . . . . . . . 10
⊢ ((𝑢: ℋ⟶ ℋ ∧
𝑢: ℋ⟶ ℋ)
→ (𝑢 ∘ 𝑢): ℋ⟶
ℋ) |
| 31 | 18, 18, 30 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝑢 ∈ HrmOp → (𝑢 ∘ 𝑢): ℋ⟶ ℋ) |
| 32 | | homulass 31788 |
. . . . . . . . . 10
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧
(√‘(normop‘𝑇)) ∈ ℂ ∧ (𝑢 ∘ 𝑢): ℋ⟶ ℋ) →
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) |
| 33 | 19, 19, 32 | mp3an12 1453 |
. . . . . . . . 9
⊢ ((𝑢 ∘ 𝑢): ℋ⟶ ℋ →
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) |
| 34 | 31, 33 | syl 17 |
. . . . . . . 8
⊢ (𝑢 ∈ HrmOp →
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) |
| 35 | 6 | sqrtthi 15394 |
. . . . . . . . . 10
⊢ (0 ≤
(normop‘𝑇)
→ ((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) = (normop‘𝑇)) |
| 36 | 5, 35 | ax-mp 5 |
. . . . . . . . 9
⊢
((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) = (normop‘𝑇) |
| 37 | 36 | oveq1i 7420 |
. . . . . . . 8
⊢
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) = ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) |
| 38 | 34, 37 | eqtr3di 2786 |
. . . . . . 7
⊢ (𝑢 ∈ HrmOp →
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) = ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢))) |
| 39 | 24, 29, 38 | 3eqtrd 2775 |
. . . . . 6
⊢ (𝑢 ∈ HrmOp →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((normop‘𝑇) ·op (𝑢 ∘ 𝑢))) |
| 40 | 39 | ad2antlr 727 |
. . . . 5
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧
(𝑢 ∘ 𝑢) = 𝑅) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((normop‘𝑇) ·op (𝑢 ∘ 𝑢))) |
| 41 | | id 22 |
. . . . . . . . 9
⊢ ((𝑢 ∘ 𝑢) = 𝑅 → (𝑢 ∘ 𝑢) = 𝑅) |
| 42 | | opsqrlem1.4 |
. . . . . . . . 9
⊢ 𝑅 = ((1 /
(normop‘𝑇)) ·op 𝑇) |
| 43 | 41, 42 | eqtrdi 2787 |
. . . . . . . 8
⊢ ((𝑢 ∘ 𝑢) = 𝑅 → (𝑢 ∘ 𝑢) = ((1 / (normop‘𝑇)) ·op
𝑇)) |
| 44 | 43 | oveq2d 7426 |
. . . . . . 7
⊢ ((𝑢 ∘ 𝑢) = 𝑅 → ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) |
| 45 | | hmoplin 31928 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) |
| 46 | 1, 45 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 𝑇 ∈ LinOp |
| 47 | | nmlnopne0 31985 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ LinOp →
((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop )) |
| 48 | 46, 47 | ax-mp 5 |
. . . . . . . . . 10
⊢
((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop ) |
| 49 | 6 | recni 11254 |
. . . . . . . . . . 11
⊢
(normop‘𝑇) ∈ ℂ |
| 50 | 49 | recidzi 11973 |
. . . . . . . . . 10
⊢
((normop‘𝑇) ≠ 0 →
((normop‘𝑇) · (1 /
(normop‘𝑇))) = 1) |
| 51 | 48, 50 | sylbir 235 |
. . . . . . . . 9
⊢ (𝑇 ≠ 0hop →
((normop‘𝑇) · (1 /
(normop‘𝑇))) = 1) |
| 52 | 51 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝑇 ≠ 0hop →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) = (1
·op 𝑇)) |
| 53 | 6 | rerecclzi 12010 |
. . . . . . . . . . 11
⊢
((normop‘𝑇) ≠ 0 → (1 /
(normop‘𝑇)) ∈ ℝ) |
| 54 | 48, 53 | sylbir 235 |
. . . . . . . . . 10
⊢ (𝑇 ≠ 0hop → (1
/ (normop‘𝑇)) ∈ ℝ) |
| 55 | 54 | recnd 11268 |
. . . . . . . . 9
⊢ (𝑇 ≠ 0hop → (1
/ (normop‘𝑇)) ∈ ℂ) |
| 56 | | homulass 31788 |
. . . . . . . . . 10
⊢
(((normop‘𝑇) ∈ ℂ ∧ (1 /
(normop‘𝑇)) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) |
| 57 | 49, 3, 56 | mp3an13 1454 |
. . . . . . . . 9
⊢ ((1 /
(normop‘𝑇)) ∈ ℂ →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) |
| 58 | 55, 57 | syl 17 |
. . . . . . . 8
⊢ (𝑇 ≠ 0hop →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) |
| 59 | | homullid 31786 |
. . . . . . . . 9
⊢ (𝑇: ℋ⟶ ℋ →
(1 ·op 𝑇) = 𝑇) |
| 60 | 3, 59 | mp1i 13 |
. . . . . . . 8
⊢ (𝑇 ≠ 0hop → (1
·op 𝑇) = 𝑇) |
| 61 | 52, 58, 60 | 3eqtr3d 2779 |
. . . . . . 7
⊢ (𝑇 ≠ 0hop →
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇)) = 𝑇) |
| 62 | 44, 61 | sylan9eqr 2793 |
. . . . . 6
⊢ ((𝑇 ≠ 0hop ∧
(𝑢 ∘ 𝑢) = 𝑅) → ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) = 𝑇) |
| 63 | 62 | adantlr 715 |
. . . . 5
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧
(𝑢 ∘ 𝑢) = 𝑅) → ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) = 𝑇) |
| 64 | 40, 63 | eqtrd 2771 |
. . . 4
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧
(𝑢 ∘ 𝑢) = 𝑅) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇) |
| 65 | 64 | adantrl 716 |
. . 3
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇) |
| 66 | | breq2 5128 |
. . . . 5
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → ( 0hop
≤op 𝑣 ↔
0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢))) |
| 67 | | coeq1 5842 |
. . . . . . 7
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → (𝑣 ∘ 𝑣) =
(((√‘(normop‘𝑇)) ·op 𝑢) ∘ 𝑣)) |
| 68 | | coeq2 5843 |
. . . . . . 7
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘ 𝑣) =
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢))) |
| 69 | 67, 68 | eqtrd 2771 |
. . . . . 6
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → (𝑣 ∘ 𝑣) =
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢))) |
| 70 | 69 | eqeq1d 2738 |
. . . . 5
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → ((𝑣 ∘ 𝑣) = 𝑇 ↔
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇)) |
| 71 | 66, 70 | anbi12d 632 |
. . . 4
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → (( 0hop
≤op 𝑣 ∧
(𝑣 ∘ 𝑣) = 𝑇) ↔ ( 0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢) ∧
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇))) |
| 72 | 71 | rspcev 3606 |
. . 3
⊢
((((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp ∧ (
0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢) ∧
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇)) → ∃𝑣 ∈ HrmOp ( 0hop
≤op 𝑣 ∧
(𝑣 ∘ 𝑣) = 𝑇)) |
| 73 | 11, 17, 65, 72 | syl12anc 836 |
. 2
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) → ∃𝑣 ∈ HrmOp ( 0hop
≤op 𝑣 ∧
(𝑣 ∘ 𝑣) = 𝑇)) |
| 74 | | opsqrlem1.5 |
. 2
⊢ (𝑇 ≠ 0hop →
∃𝑢 ∈ HrmOp (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) |
| 75 | 73, 74 | r19.29a 3149 |
1
⊢ (𝑇 ≠ 0hop →
∃𝑣 ∈ HrmOp (
0hop ≤op 𝑣 ∧ (𝑣 ∘ 𝑣) = 𝑇)) |