Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem1 Structured version   Visualization version   GIF version

Theorem opsqrlem1 29932
 Description: Lemma for opsqri . (Contributed by NM, 9-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem1.1 𝑇 ∈ HrmOp
opsqrlem1.2 (normop𝑇) ∈ ℝ
opsqrlem1.3 0hopop 𝑇
opsqrlem1.4 𝑅 = ((1 / (normop𝑇)) ·op 𝑇)
opsqrlem1.5 (𝑇 ≠ 0hop → ∃𝑢 ∈ HrmOp ( 0hopop 𝑢 ∧ (𝑢𝑢) = 𝑅))
Assertion
Ref Expression
opsqrlem1 (𝑇 ≠ 0hop → ∃𝑣 ∈ HrmOp ( 0hopop 𝑣 ∧ (𝑣𝑣) = 𝑇))
Distinct variable group:   𝑣,𝑢,𝑇
Allowed substitution hints:   𝑅(𝑣,𝑢)

Proof of Theorem opsqrlem1
StepHypRef Expression
1 opsqrlem1.1 . . . . . . . 8 𝑇 ∈ HrmOp
2 hmopf 29666 . . . . . . . 8 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
31, 2ax-mp 5 . . . . . . 7 𝑇: ℋ⟶ ℋ
4 nmopge0 29703 . . . . . . 7 (𝑇: ℋ⟶ ℋ → 0 ≤ (normop𝑇))
53, 4ax-mp 5 . . . . . 6 0 ≤ (normop𝑇)
6 opsqrlem1.2 . . . . . . 7 (normop𝑇) ∈ ℝ
76sqrtcli 14733 . . . . . 6 (0 ≤ (normop𝑇) → (√‘(normop𝑇)) ∈ ℝ)
85, 7ax-mp 5 . . . . 5 (√‘(normop𝑇)) ∈ ℝ
9 hmopm 29813 . . . . 5 (((√‘(normop𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) → ((√‘(normop𝑇)) ·op 𝑢) ∈ HrmOp)
108, 9mpan 689 . . . 4 (𝑢 ∈ HrmOp → ((√‘(normop𝑇)) ·op 𝑢) ∈ HrmOp)
1110ad2antlr 726 . . 3 (((𝑇 ≠ 0hop𝑢 ∈ HrmOp) ∧ ( 0hopop 𝑢 ∧ (𝑢𝑢) = 𝑅)) → ((√‘(normop𝑇)) ·op 𝑢) ∈ HrmOp)
126sqrtge0i 14738 . . . . . . 7 (0 ≤ (normop𝑇) → 0 ≤ (√‘(normop𝑇)))
135, 12ax-mp 5 . . . . . 6 0 ≤ (√‘(normop𝑇))
14 leopmuli 29925 . . . . . 6 ((((√‘(normop𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) ∧ (0 ≤ (√‘(normop𝑇)) ∧ 0hopop 𝑢)) → 0hopop ((√‘(normop𝑇)) ·op 𝑢))
1513, 14mpanr1 702 . . . . 5 ((((√‘(normop𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) ∧ 0hopop 𝑢) → 0hopop ((√‘(normop𝑇)) ·op 𝑢))
168, 15mpanl1 699 . . . 4 ((𝑢 ∈ HrmOp ∧ 0hopop 𝑢) → 0hopop ((√‘(normop𝑇)) ·op 𝑢))
1716ad2ant2lr 747 . . 3 (((𝑇 ≠ 0hop𝑢 ∈ HrmOp) ∧ ( 0hopop 𝑢 ∧ (𝑢𝑢) = 𝑅)) → 0hopop ((√‘(normop𝑇)) ·op 𝑢))
18 hmopf 29666 . . . . . . . 8 (𝑢 ∈ HrmOp → 𝑢: ℋ⟶ ℋ)
198recni 10655 . . . . . . . . 9 (√‘(normop𝑇)) ∈ ℂ
20 homulcl 29551 . . . . . . . . 9 (((√‘(normop𝑇)) ∈ ℂ ∧ 𝑢: ℋ⟶ ℋ) → ((√‘(normop𝑇)) ·op 𝑢): ℋ⟶ ℋ)
2119, 20mpan 689 . . . . . . . 8 (𝑢: ℋ⟶ ℋ → ((√‘(normop𝑇)) ·op 𝑢): ℋ⟶ ℋ)
22 homco1 29593 . . . . . . . . 9 (((√‘(normop𝑇)) ∈ ℂ ∧ 𝑢: ℋ⟶ ℋ ∧ ((√‘(normop𝑇)) ·op 𝑢): ℋ⟶ ℋ) → (((√‘(normop𝑇)) ·op 𝑢) ∘ ((√‘(normop𝑇)) ·op 𝑢)) = ((√‘(normop𝑇)) ·op (𝑢 ∘ ((√‘(normop𝑇)) ·op 𝑢))))
2319, 22mp3an1 1445 . . . . . . . 8 ((𝑢: ℋ⟶ ℋ ∧ ((√‘(normop𝑇)) ·op 𝑢): ℋ⟶ ℋ) → (((√‘(normop𝑇)) ·op 𝑢) ∘ ((√‘(normop𝑇)) ·op 𝑢)) = ((√‘(normop𝑇)) ·op (𝑢 ∘ ((√‘(normop𝑇)) ·op 𝑢))))
2418, 21, 23syl2anc2 588 . . . . . . 7 (𝑢 ∈ HrmOp → (((√‘(normop𝑇)) ·op 𝑢) ∘ ((√‘(normop𝑇)) ·op 𝑢)) = ((√‘(normop𝑇)) ·op (𝑢 ∘ ((√‘(normop𝑇)) ·op 𝑢))))
25 hmoplin 29734 . . . . . . . . 9 (𝑢 ∈ HrmOp → 𝑢 ∈ LinOp)
26 homco2 29769 . . . . . . . . . 10 (((√‘(normop𝑇)) ∈ ℂ ∧ 𝑢 ∈ LinOp ∧ 𝑢: ℋ⟶ ℋ) → (𝑢 ∘ ((√‘(normop𝑇)) ·op 𝑢)) = ((√‘(normop𝑇)) ·op (𝑢𝑢)))
2719, 26mp3an1 1445 . . . . . . . . 9 ((𝑢 ∈ LinOp ∧ 𝑢: ℋ⟶ ℋ) → (𝑢 ∘ ((√‘(normop𝑇)) ·op 𝑢)) = ((√‘(normop𝑇)) ·op (𝑢𝑢)))
2825, 18, 27syl2anc 587 . . . . . . . 8 (𝑢 ∈ HrmOp → (𝑢 ∘ ((√‘(normop𝑇)) ·op 𝑢)) = ((√‘(normop𝑇)) ·op (𝑢𝑢)))
2928oveq2d 7167 . . . . . . 7 (𝑢 ∈ HrmOp → ((√‘(normop𝑇)) ·op (𝑢 ∘ ((√‘(normop𝑇)) ·op 𝑢))) = ((√‘(normop𝑇)) ·op ((√‘(normop𝑇)) ·op (𝑢𝑢))))
306sqrtthi 14732 . . . . . . . . . 10 (0 ≤ (normop𝑇) → ((√‘(normop𝑇)) · (√‘(normop𝑇))) = (normop𝑇))
315, 30ax-mp 5 . . . . . . . . 9 ((√‘(normop𝑇)) · (√‘(normop𝑇))) = (normop𝑇)
3231oveq1i 7161 . . . . . . . 8 (((√‘(normop𝑇)) · (√‘(normop𝑇))) ·op (𝑢𝑢)) = ((normop𝑇) ·op (𝑢𝑢))
33 fco 6523 . . . . . . . . . 10 ((𝑢: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) → (𝑢𝑢): ℋ⟶ ℋ)
3418, 18, 33syl2anc 587 . . . . . . . . 9 (𝑢 ∈ HrmOp → (𝑢𝑢): ℋ⟶ ℋ)
35 homulass 29594 . . . . . . . . . 10 (((√‘(normop𝑇)) ∈ ℂ ∧ (√‘(normop𝑇)) ∈ ℂ ∧ (𝑢𝑢): ℋ⟶ ℋ) → (((√‘(normop𝑇)) · (√‘(normop𝑇))) ·op (𝑢𝑢)) = ((√‘(normop𝑇)) ·op ((√‘(normop𝑇)) ·op (𝑢𝑢))))
3619, 19, 35mp3an12 1448 . . . . . . . . 9 ((𝑢𝑢): ℋ⟶ ℋ → (((√‘(normop𝑇)) · (√‘(normop𝑇))) ·op (𝑢𝑢)) = ((√‘(normop𝑇)) ·op ((√‘(normop𝑇)) ·op (𝑢𝑢))))
3734, 36syl 17 . . . . . . . 8 (𝑢 ∈ HrmOp → (((√‘(normop𝑇)) · (√‘(normop𝑇))) ·op (𝑢𝑢)) = ((√‘(normop𝑇)) ·op ((√‘(normop𝑇)) ·op (𝑢𝑢))))
3832, 37syl5reqr 2874 . . . . . . 7 (𝑢 ∈ HrmOp → ((√‘(normop𝑇)) ·op ((√‘(normop𝑇)) ·op (𝑢𝑢))) = ((normop𝑇) ·op (𝑢𝑢)))
3924, 29, 383eqtrd 2863 . . . . . 6 (𝑢 ∈ HrmOp → (((√‘(normop𝑇)) ·op 𝑢) ∘ ((√‘(normop𝑇)) ·op 𝑢)) = ((normop𝑇) ·op (𝑢𝑢)))
4039ad2antlr 726 . . . . 5 (((𝑇 ≠ 0hop𝑢 ∈ HrmOp) ∧ (𝑢𝑢) = 𝑅) → (((√‘(normop𝑇)) ·op 𝑢) ∘ ((√‘(normop𝑇)) ·op 𝑢)) = ((normop𝑇) ·op (𝑢𝑢)))
41 id 22 . . . . . . . . 9 ((𝑢𝑢) = 𝑅 → (𝑢𝑢) = 𝑅)
42 opsqrlem1.4 . . . . . . . . 9 𝑅 = ((1 / (normop𝑇)) ·op 𝑇)
4341, 42syl6eq 2875 . . . . . . . 8 ((𝑢𝑢) = 𝑅 → (𝑢𝑢) = ((1 / (normop𝑇)) ·op 𝑇))
4443oveq2d 7167 . . . . . . 7 ((𝑢𝑢) = 𝑅 → ((normop𝑇) ·op (𝑢𝑢)) = ((normop𝑇) ·op ((1 / (normop𝑇)) ·op 𝑇)))
45 hmoplin 29734 . . . . . . . . . . . 12 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
461, 45ax-mp 5 . . . . . . . . . . 11 𝑇 ∈ LinOp
47 nmlnopne0 29791 . . . . . . . . . . 11 (𝑇 ∈ LinOp → ((normop𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop ))
4846, 47ax-mp 5 . . . . . . . . . 10 ((normop𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop )
496recni 10655 . . . . . . . . . . 11 (normop𝑇) ∈ ℂ
5049recidzi 11367 . . . . . . . . . 10 ((normop𝑇) ≠ 0 → ((normop𝑇) · (1 / (normop𝑇))) = 1)
5148, 50sylbir 238 . . . . . . . . 9 (𝑇 ≠ 0hop → ((normop𝑇) · (1 / (normop𝑇))) = 1)
5251oveq1d 7166 . . . . . . . 8 (𝑇 ≠ 0hop → (((normop𝑇) · (1 / (normop𝑇))) ·op 𝑇) = (1 ·op 𝑇))
536rerecclzi 11404 . . . . . . . . . . 11 ((normop𝑇) ≠ 0 → (1 / (normop𝑇)) ∈ ℝ)
5448, 53sylbir 238 . . . . . . . . . 10 (𝑇 ≠ 0hop → (1 / (normop𝑇)) ∈ ℝ)
5554recnd 10669 . . . . . . . . 9 (𝑇 ≠ 0hop → (1 / (normop𝑇)) ∈ ℂ)
56 homulass 29594 . . . . . . . . . 10 (((normop𝑇) ∈ ℂ ∧ (1 / (normop𝑇)) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (((normop𝑇) · (1 / (normop𝑇))) ·op 𝑇) = ((normop𝑇) ·op ((1 / (normop𝑇)) ·op 𝑇)))
5749, 3, 56mp3an13 1449 . . . . . . . . 9 ((1 / (normop𝑇)) ∈ ℂ → (((normop𝑇) · (1 / (normop𝑇))) ·op 𝑇) = ((normop𝑇) ·op ((1 / (normop𝑇)) ·op 𝑇)))
5855, 57syl 17 . . . . . . . 8 (𝑇 ≠ 0hop → (((normop𝑇) · (1 / (normop𝑇))) ·op 𝑇) = ((normop𝑇) ·op ((1 / (normop𝑇)) ·op 𝑇)))
59 homulid2 29592 . . . . . . . . 9 (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇)
603, 59mp1i 13 . . . . . . . 8 (𝑇 ≠ 0hop → (1 ·op 𝑇) = 𝑇)
6152, 58, 603eqtr3d 2867 . . . . . . 7 (𝑇 ≠ 0hop → ((normop𝑇) ·op ((1 / (normop𝑇)) ·op 𝑇)) = 𝑇)
6244, 61sylan9eqr 2881 . . . . . 6 ((𝑇 ≠ 0hop ∧ (𝑢𝑢) = 𝑅) → ((normop𝑇) ·op (𝑢𝑢)) = 𝑇)
6362adantlr 714 . . . . 5 (((𝑇 ≠ 0hop𝑢 ∈ HrmOp) ∧ (𝑢𝑢) = 𝑅) → ((normop𝑇) ·op (𝑢𝑢)) = 𝑇)
6440, 63eqtrd 2859 . . . 4 (((𝑇 ≠ 0hop𝑢 ∈ HrmOp) ∧ (𝑢𝑢) = 𝑅) → (((√‘(normop𝑇)) ·op 𝑢) ∘ ((√‘(normop𝑇)) ·op 𝑢)) = 𝑇)
6564adantrl 715 . . 3 (((𝑇 ≠ 0hop𝑢 ∈ HrmOp) ∧ ( 0hopop 𝑢 ∧ (𝑢𝑢) = 𝑅)) → (((√‘(normop𝑇)) ·op 𝑢) ∘ ((√‘(normop𝑇)) ·op 𝑢)) = 𝑇)
66 breq2 5057 . . . . 5 (𝑣 = ((√‘(normop𝑇)) ·op 𝑢) → ( 0hopop 𝑣 ↔ 0hopop ((√‘(normop𝑇)) ·op 𝑢)))
67 coeq1 5716 . . . . . . 7 (𝑣 = ((√‘(normop𝑇)) ·op 𝑢) → (𝑣𝑣) = (((√‘(normop𝑇)) ·op 𝑢) ∘ 𝑣))
68 coeq2 5717 . . . . . . 7 (𝑣 = ((√‘(normop𝑇)) ·op 𝑢) → (((√‘(normop𝑇)) ·op 𝑢) ∘ 𝑣) = (((√‘(normop𝑇)) ·op 𝑢) ∘ ((√‘(normop𝑇)) ·op 𝑢)))
6967, 68eqtrd 2859 . . . . . 6 (𝑣 = ((√‘(normop𝑇)) ·op 𝑢) → (𝑣𝑣) = (((√‘(normop𝑇)) ·op 𝑢) ∘ ((√‘(normop𝑇)) ·op 𝑢)))
7069eqeq1d 2826 . . . . 5 (𝑣 = ((√‘(normop𝑇)) ·op 𝑢) → ((𝑣𝑣) = 𝑇 ↔ (((√‘(normop𝑇)) ·op 𝑢) ∘ ((√‘(normop𝑇)) ·op 𝑢)) = 𝑇))
7166, 70anbi12d 633 . . . 4 (𝑣 = ((√‘(normop𝑇)) ·op 𝑢) → (( 0hopop 𝑣 ∧ (𝑣𝑣) = 𝑇) ↔ ( 0hopop ((√‘(normop𝑇)) ·op 𝑢) ∧ (((√‘(normop𝑇)) ·op 𝑢) ∘ ((√‘(normop𝑇)) ·op 𝑢)) = 𝑇)))
7271rspcev 3609 . . 3 ((((√‘(normop𝑇)) ·op 𝑢) ∈ HrmOp ∧ ( 0hopop ((√‘(normop𝑇)) ·op 𝑢) ∧ (((√‘(normop𝑇)) ·op 𝑢) ∘ ((√‘(normop𝑇)) ·op 𝑢)) = 𝑇)) → ∃𝑣 ∈ HrmOp ( 0hopop 𝑣 ∧ (𝑣𝑣) = 𝑇))
7311, 17, 65, 72syl12anc 835 . 2 (((𝑇 ≠ 0hop𝑢 ∈ HrmOp) ∧ ( 0hopop 𝑢 ∧ (𝑢𝑢) = 𝑅)) → ∃𝑣 ∈ HrmOp ( 0hopop 𝑣 ∧ (𝑣𝑣) = 𝑇))
74 opsqrlem1.5 . 2 (𝑇 ≠ 0hop → ∃𝑢 ∈ HrmOp ( 0hopop 𝑢 ∧ (𝑢𝑢) = 𝑅))
7573, 74r19.29a 3281 1 (𝑇 ≠ 0hop → ∃𝑣 ∈ HrmOp ( 0hopop 𝑣 ∧ (𝑣𝑣) = 𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  ∃wrex 3134   class class class wbr 5053   ∘ ccom 5547  ⟶wf 6341  ‘cfv 6345  (class class class)co 7151  ℂcc 10535  ℝcr 10536  0cc0 10537  1c1 10538   · cmul 10542   ≤ cle 10676   / cdiv 11297  √csqrt 14594   ℋchba 28711   ·op chot 28731   0hop ch0o 28735  normopcnop 28737  LinOpclo 28739  HrmOpcho 28742   ≤op cleo 28750 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-inf2 9103  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617  ax-hilex 28791  ax-hfvadd 28792  ax-hvcom 28793  ax-hvass 28794  ax-hv0cl 28795  ax-hvaddid 28796  ax-hfvmul 28797  ax-hvmulid 28798  ax-hvmulass 28799  ax-hvdistr1 28800  ax-hvdistr2 28801  ax-hvmul0 28802  ax-hfi 28871  ax-his1 28874  ax-his2 28875  ax-his3 28876  ax-his4 28877  ax-hcompl 28994 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-isom 6354  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7405  df-om 7577  df-1st 7686  df-2nd 7687  df-supp 7829  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-2o 8101  df-oadd 8104  df-omul 8105  df-er 8287  df-map 8406  df-pm 8407  df-ixp 8460  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-acn 9370  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ico 12743  df-icc 12744  df-fz 12897  df-fzo 13040  df-fl 13168  df-seq 13376  df-exp 13437  df-hash 13698  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20092  df-xmet 20093  df-met 20094  df-bl 20095  df-mopn 20096  df-fbas 20097  df-fg 20098  df-cnfld 20101  df-top 21508  df-topon 21525  df-topsp 21547  df-bases 21560  df-cld 21633  df-ntr 21634  df-cls 21635  df-nei 21712  df-cn 21841  df-cnp 21842  df-lm 21843  df-haus 21929  df-tx 22176  df-hmeo 22369  df-fil 22460  df-fm 22552  df-flim 22553  df-flf 22554  df-xms 22936  df-ms 22937  df-tms 22938  df-cfil 23868  df-cau 23869  df-cmet 23870  df-grpo 28285  df-gid 28286  df-ginv 28287  df-gdiv 28288  df-ablo 28337  df-vc 28351  df-nv 28384  df-va 28387  df-ba 28388  df-sm 28389  df-0v 28390  df-vs 28391  df-nmcv 28392  df-ims 28393  df-dip 28493  df-ssp 28514  df-lno 28536  df-nmoo 28537  df-0o 28539  df-ph 28605  df-cbn 28655  df-hnorm 28760  df-hba 28761  df-hvsub 28763  df-hlim 28764  df-hcau 28765  df-sh 28999  df-ch 29013  df-oc 29044  df-ch0 29045  df-shs 29100  df-pjh 29187  df-hosum 29522  df-homul 29523  df-hodif 29524  df-h0op 29540  df-nmop 29631  df-lnop 29633  df-hmop 29636  df-leop 29644 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator