Proof of Theorem opsqrlem1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | opsqrlem1.1 | . . . . . . . 8
⊢ 𝑇 ∈ HrmOp | 
| 2 |  | hmopf 31893 | . . . . . . . 8
⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶
ℋ) | 
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7
⊢ 𝑇: ℋ⟶
ℋ | 
| 4 |  | nmopge0 31930 | . . . . . . 7
⊢ (𝑇: ℋ⟶ ℋ →
0 ≤ (normop‘𝑇)) | 
| 5 | 3, 4 | ax-mp 5 | . . . . . 6
⊢ 0 ≤
(normop‘𝑇) | 
| 6 |  | opsqrlem1.2 | . . . . . . 7
⊢
(normop‘𝑇) ∈ ℝ | 
| 7 | 6 | sqrtcli 15410 | . . . . . 6
⊢ (0 ≤
(normop‘𝑇)
→ (√‘(normop‘𝑇)) ∈ ℝ) | 
| 8 | 5, 7 | ax-mp 5 | . . . . 5
⊢
(√‘(normop‘𝑇)) ∈ ℝ | 
| 9 |  | hmopm 32040 | . . . . 5
⊢
(((√‘(normop‘𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) →
((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp) | 
| 10 | 8, 9 | mpan 690 | . . . 4
⊢ (𝑢 ∈ HrmOp →
((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp) | 
| 11 | 10 | ad2antlr 727 | . . 3
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) →
((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp) | 
| 12 | 6 | sqrtge0i 15415 | . . . . . . 7
⊢ (0 ≤
(normop‘𝑇)
→ 0 ≤ (√‘(normop‘𝑇))) | 
| 13 | 5, 12 | ax-mp 5 | . . . . . 6
⊢ 0 ≤
(√‘(normop‘𝑇)) | 
| 14 |  | leopmuli 32152 | . . . . . 6
⊢
((((√‘(normop‘𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) ∧ (0 ≤
(√‘(normop‘𝑇)) ∧ 0hop ≤op
𝑢)) → 0hop
≤op ((√‘(normop‘𝑇)) ·op 𝑢)) | 
| 15 | 13, 14 | mpanr1 703 | . . . . 5
⊢
((((√‘(normop‘𝑇)) ∈ ℝ ∧ 𝑢 ∈ HrmOp) ∧ 0hop
≤op 𝑢) →
0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢)) | 
| 16 | 8, 15 | mpanl1 700 | . . . 4
⊢ ((𝑢 ∈ HrmOp ∧
0hop ≤op 𝑢) → 0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢)) | 
| 17 | 16 | ad2ant2lr 748 | . . 3
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) → 0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢)) | 
| 18 |  | hmopf 31893 | . . . . . . . 8
⊢ (𝑢 ∈ HrmOp → 𝑢: ℋ⟶
ℋ) | 
| 19 | 8 | recni 11275 | . . . . . . . . 9
⊢
(√‘(normop‘𝑇)) ∈ ℂ | 
| 20 |  | homulcl 31778 | . . . . . . . . 9
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧ 𝑢: ℋ⟶ ℋ) →
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶
ℋ) | 
| 21 | 19, 20 | mpan 690 | . . . . . . . 8
⊢ (𝑢: ℋ⟶ ℋ →
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶
ℋ) | 
| 22 |  | homco1 31820 | . . . . . . . . 9
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧ 𝑢: ℋ⟶ ℋ ∧
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶ ℋ)
→ (((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)))) | 
| 23 | 19, 22 | mp3an1 1450 | . . . . . . . 8
⊢ ((𝑢: ℋ⟶ ℋ ∧
((√‘(normop‘𝑇)) ·op 𝑢): ℋ⟶ ℋ)
→ (((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)))) | 
| 24 | 18, 21, 23 | syl2anc2 585 | . . . . . . 7
⊢ (𝑢 ∈ HrmOp →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)))) | 
| 25 |  | hmoplin 31961 | . . . . . . . . 9
⊢ (𝑢 ∈ HrmOp → 𝑢 ∈ LinOp) | 
| 26 |  | homco2 31996 | . . . . . . . . . 10
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧ 𝑢 ∈ LinOp ∧ 𝑢: ℋ⟶ ℋ) → (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) | 
| 27 | 19, 26 | mp3an1 1450 | . . . . . . . . 9
⊢ ((𝑢 ∈ LinOp ∧ 𝑢: ℋ⟶ ℋ)
→ (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) | 
| 28 | 25, 18, 27 | syl2anc 584 | . . . . . . . 8
⊢ (𝑢 ∈ HrmOp → (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) | 
| 29 | 28 | oveq2d 7447 | . . . . . . 7
⊢ (𝑢 ∈ HrmOp →
((√‘(normop‘𝑇)) ·op (𝑢 ∘
((√‘(normop‘𝑇)) ·op 𝑢))) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) | 
| 30 |  | fco 6760 | . . . . . . . . . 10
⊢ ((𝑢: ℋ⟶ ℋ ∧
𝑢: ℋ⟶ ℋ)
→ (𝑢 ∘ 𝑢): ℋ⟶
ℋ) | 
| 31 | 18, 18, 30 | syl2anc 584 | . . . . . . . . 9
⊢ (𝑢 ∈ HrmOp → (𝑢 ∘ 𝑢): ℋ⟶ ℋ) | 
| 32 |  | homulass 31821 | . . . . . . . . . 10
⊢
(((√‘(normop‘𝑇)) ∈ ℂ ∧
(√‘(normop‘𝑇)) ∈ ℂ ∧ (𝑢 ∘ 𝑢): ℋ⟶ ℋ) →
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) | 
| 33 | 19, 19, 32 | mp3an12 1453 | . . . . . . . . 9
⊢ ((𝑢 ∘ 𝑢): ℋ⟶ ℋ →
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) | 
| 34 | 31, 33 | syl 17 | . . . . . . . 8
⊢ (𝑢 ∈ HrmOp →
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) =
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢)))) | 
| 35 | 6 | sqrtthi 15409 | . . . . . . . . . 10
⊢ (0 ≤
(normop‘𝑇)
→ ((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) = (normop‘𝑇)) | 
| 36 | 5, 35 | ax-mp 5 | . . . . . . . . 9
⊢
((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) = (normop‘𝑇) | 
| 37 | 36 | oveq1i 7441 | . . . . . . . 8
⊢
(((√‘(normop‘𝑇)) ·
(√‘(normop‘𝑇))) ·op (𝑢 ∘ 𝑢)) = ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) | 
| 38 | 34, 37 | eqtr3di 2792 | . . . . . . 7
⊢ (𝑢 ∈ HrmOp →
((√‘(normop‘𝑇)) ·op
((√‘(normop‘𝑇)) ·op (𝑢 ∘ 𝑢))) = ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢))) | 
| 39 | 24, 29, 38 | 3eqtrd 2781 | . . . . . 6
⊢ (𝑢 ∈ HrmOp →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((normop‘𝑇) ·op (𝑢 ∘ 𝑢))) | 
| 40 | 39 | ad2antlr 727 | . . . . 5
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧
(𝑢 ∘ 𝑢) = 𝑅) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) =
((normop‘𝑇) ·op (𝑢 ∘ 𝑢))) | 
| 41 |  | id 22 | . . . . . . . . 9
⊢ ((𝑢 ∘ 𝑢) = 𝑅 → (𝑢 ∘ 𝑢) = 𝑅) | 
| 42 |  | opsqrlem1.4 | . . . . . . . . 9
⊢ 𝑅 = ((1 /
(normop‘𝑇)) ·op 𝑇) | 
| 43 | 41, 42 | eqtrdi 2793 | . . . . . . . 8
⊢ ((𝑢 ∘ 𝑢) = 𝑅 → (𝑢 ∘ 𝑢) = ((1 / (normop‘𝑇)) ·op
𝑇)) | 
| 44 | 43 | oveq2d 7447 | . . . . . . 7
⊢ ((𝑢 ∘ 𝑢) = 𝑅 → ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) | 
| 45 |  | hmoplin 31961 | . . . . . . . . . . . 12
⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) | 
| 46 | 1, 45 | ax-mp 5 | . . . . . . . . . . 11
⊢ 𝑇 ∈ LinOp | 
| 47 |  | nmlnopne0 32018 | . . . . . . . . . . 11
⊢ (𝑇 ∈ LinOp →
((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop )) | 
| 48 | 46, 47 | ax-mp 5 | . . . . . . . . . 10
⊢
((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop ) | 
| 49 | 6 | recni 11275 | . . . . . . . . . . 11
⊢
(normop‘𝑇) ∈ ℂ | 
| 50 | 49 | recidzi 11994 | . . . . . . . . . 10
⊢
((normop‘𝑇) ≠ 0 →
((normop‘𝑇) · (1 /
(normop‘𝑇))) = 1) | 
| 51 | 48, 50 | sylbir 235 | . . . . . . . . 9
⊢ (𝑇 ≠ 0hop →
((normop‘𝑇) · (1 /
(normop‘𝑇))) = 1) | 
| 52 | 51 | oveq1d 7446 | . . . . . . . 8
⊢ (𝑇 ≠ 0hop →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) = (1
·op 𝑇)) | 
| 53 | 6 | rerecclzi 12031 | . . . . . . . . . . 11
⊢
((normop‘𝑇) ≠ 0 → (1 /
(normop‘𝑇)) ∈ ℝ) | 
| 54 | 48, 53 | sylbir 235 | . . . . . . . . . 10
⊢ (𝑇 ≠ 0hop → (1
/ (normop‘𝑇)) ∈ ℝ) | 
| 55 | 54 | recnd 11289 | . . . . . . . . 9
⊢ (𝑇 ≠ 0hop → (1
/ (normop‘𝑇)) ∈ ℂ) | 
| 56 |  | homulass 31821 | . . . . . . . . . 10
⊢
(((normop‘𝑇) ∈ ℂ ∧ (1 /
(normop‘𝑇)) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) | 
| 57 | 49, 3, 56 | mp3an13 1454 | . . . . . . . . 9
⊢ ((1 /
(normop‘𝑇)) ∈ ℂ →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) | 
| 58 | 55, 57 | syl 17 | . . . . . . . 8
⊢ (𝑇 ≠ 0hop →
(((normop‘𝑇) · (1 /
(normop‘𝑇))) ·op 𝑇) =
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇))) | 
| 59 |  | homullid 31819 | . . . . . . . . 9
⊢ (𝑇: ℋ⟶ ℋ →
(1 ·op 𝑇) = 𝑇) | 
| 60 | 3, 59 | mp1i 13 | . . . . . . . 8
⊢ (𝑇 ≠ 0hop → (1
·op 𝑇) = 𝑇) | 
| 61 | 52, 58, 60 | 3eqtr3d 2785 | . . . . . . 7
⊢ (𝑇 ≠ 0hop →
((normop‘𝑇) ·op ((1 /
(normop‘𝑇)) ·op 𝑇)) = 𝑇) | 
| 62 | 44, 61 | sylan9eqr 2799 | . . . . . 6
⊢ ((𝑇 ≠ 0hop ∧
(𝑢 ∘ 𝑢) = 𝑅) → ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) = 𝑇) | 
| 63 | 62 | adantlr 715 | . . . . 5
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧
(𝑢 ∘ 𝑢) = 𝑅) → ((normop‘𝑇) ·op
(𝑢 ∘ 𝑢)) = 𝑇) | 
| 64 | 40, 63 | eqtrd 2777 | . . . 4
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧
(𝑢 ∘ 𝑢) = 𝑅) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇) | 
| 65 | 64 | adantrl 716 | . . 3
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇) | 
| 66 |  | breq2 5147 | . . . . 5
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → ( 0hop
≤op 𝑣 ↔
0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢))) | 
| 67 |  | coeq1 5868 | . . . . . . 7
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → (𝑣 ∘ 𝑣) =
(((√‘(normop‘𝑇)) ·op 𝑢) ∘ 𝑣)) | 
| 68 |  | coeq2 5869 | . . . . . . 7
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) →
(((√‘(normop‘𝑇)) ·op 𝑢) ∘ 𝑣) =
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢))) | 
| 69 | 67, 68 | eqtrd 2777 | . . . . . 6
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → (𝑣 ∘ 𝑣) =
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢))) | 
| 70 | 69 | eqeq1d 2739 | . . . . 5
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → ((𝑣 ∘ 𝑣) = 𝑇 ↔
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇)) | 
| 71 | 66, 70 | anbi12d 632 | . . . 4
⊢ (𝑣 =
((√‘(normop‘𝑇)) ·op 𝑢) → (( 0hop
≤op 𝑣 ∧
(𝑣 ∘ 𝑣) = 𝑇) ↔ ( 0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢) ∧
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇))) | 
| 72 | 71 | rspcev 3622 | . . 3
⊢
((((√‘(normop‘𝑇)) ·op 𝑢) ∈ HrmOp ∧ (
0hop ≤op
((√‘(normop‘𝑇)) ·op 𝑢) ∧
(((√‘(normop‘𝑇)) ·op 𝑢) ∘
((√‘(normop‘𝑇)) ·op 𝑢)) = 𝑇)) → ∃𝑣 ∈ HrmOp ( 0hop
≤op 𝑣 ∧
(𝑣 ∘ 𝑣) = 𝑇)) | 
| 73 | 11, 17, 65, 72 | syl12anc 837 | . 2
⊢ (((𝑇 ≠ 0hop ∧
𝑢 ∈ HrmOp) ∧ (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) → ∃𝑣 ∈ HrmOp ( 0hop
≤op 𝑣 ∧
(𝑣 ∘ 𝑣) = 𝑇)) | 
| 74 |  | opsqrlem1.5 | . 2
⊢ (𝑇 ≠ 0hop →
∃𝑢 ∈ HrmOp (
0hop ≤op 𝑢 ∧ (𝑢 ∘ 𝑢) = 𝑅)) | 
| 75 | 73, 74 | r19.29a 3162 | 1
⊢ (𝑇 ≠ 0hop →
∃𝑣 ∈ HrmOp (
0hop ≤op 𝑣 ∧ (𝑣 ∘ 𝑣) = 𝑇)) |