HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem6 Structured version   Visualization version   GIF version

Theorem opsqrlem6 29924
Description: Lemma for opsqri . (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem2.1 𝑇 ∈ HrmOp
opsqrlem2.2 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
opsqrlem2.3 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
opsqrlem6.4 𝑇op Iop
Assertion
Ref Expression
opsqrlem6 (𝑁 ∈ ℕ → (𝐹𝑁) ≤op Iop )
Distinct variable group:   𝑥,𝑦,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem opsqrlem6
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . 3 (𝑗 = 1 → (𝐹𝑗) = (𝐹‘1))
21breq1d 5078 . 2 (𝑗 = 1 → ((𝐹𝑗) ≤op Iop ↔ (𝐹‘1) ≤op Iop ))
3 fveq2 6672 . . 3 (𝑗 = (𝑘 + 1) → (𝐹𝑗) = (𝐹‘(𝑘 + 1)))
43breq1d 5078 . 2 (𝑗 = (𝑘 + 1) → ((𝐹𝑗) ≤op Iop ↔ (𝐹‘(𝑘 + 1)) ≤op Iop ))
5 fveq2 6672 . . 3 (𝑗 = 𝑁 → (𝐹𝑗) = (𝐹𝑁))
65breq1d 5078 . 2 (𝑗 = 𝑁 → ((𝐹𝑗) ≤op Iop ↔ (𝐹𝑁) ≤op Iop ))
7 opsqrlem2.1 . . . 4 𝑇 ∈ HrmOp
8 opsqrlem2.2 . . . 4 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
9 opsqrlem2.3 . . . 4 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
107, 8, 9opsqrlem2 29920 . . 3 (𝐹‘1) = 0hop
11 idleop 29910 . . 3 0hopop Iop
1210, 11eqbrtri 5089 . 2 (𝐹‘1) ≤op Iop
13 idhmop 29761 . . . . . . . 8 Iop ∈ HrmOp
147, 8, 9opsqrlem4 29922 . . . . . . . . 9 𝐹:ℕ⟶HrmOp
1514ffvelrni 6852 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ HrmOp)
16 hmopd 29801 . . . . . . . 8 (( Iop ∈ HrmOp ∧ (𝐹𝑘) ∈ HrmOp) → ( Iopop (𝐹𝑘)) ∈ HrmOp)
1713, 15, 16sylancr 589 . . . . . . 7 (𝑘 ∈ ℕ → ( Iopop (𝐹𝑘)) ∈ HrmOp)
18 eqid 2823 . . . . . . . 8 (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘)))
19 hmopco 29802 . . . . . . . 8 ((( Iopop (𝐹𝑘)) ∈ HrmOp ∧ ( Iopop (𝐹𝑘)) ∈ HrmOp ∧ (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘)))) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp)
2018, 19mp3an3 1446 . . . . . . 7 ((( Iopop (𝐹𝑘)) ∈ HrmOp ∧ ( Iopop (𝐹𝑘)) ∈ HrmOp) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp)
2117, 17, 20syl2anc 586 . . . . . 6 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp)
22 leopsq 29908 . . . . . . 7 (( Iopop (𝐹𝑘)) ∈ HrmOp → 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))))
2317, 22syl 17 . . . . . 6 (𝑘 ∈ ℕ → 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))))
24 opsqrlem6.4 . . . . . . . 8 𝑇op Iop
25 leop3 29904 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ Iop ∈ HrmOp) → (𝑇op Iop ↔ 0hopop ( Iopop 𝑇)))
267, 13, 25mp2an 690 . . . . . . . 8 (𝑇op Iop ↔ 0hopop ( Iopop 𝑇))
2724, 26mpbi 232 . . . . . . 7 0hopop ( Iopop 𝑇)
28 hmopd 29801 . . . . . . . . 9 (( Iop ∈ HrmOp ∧ 𝑇 ∈ HrmOp) → ( Iopop 𝑇) ∈ HrmOp)
2913, 7, 28mp2an 690 . . . . . . . 8 ( Iopop 𝑇) ∈ HrmOp
30 leopadd 29911 . . . . . . . 8 ((((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp ∧ ( Iopop 𝑇) ∈ HrmOp) ∧ ( 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∧ 0hopop ( Iopop 𝑇))) → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
3129, 30mpanl2 699 . . . . . . 7 (((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp ∧ ( 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∧ 0hopop ( Iopop 𝑇))) → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
3227, 31mpanr2 702 . . . . . 6 (((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp ∧ 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘)))) → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
3321, 23, 32syl2anc 586 . . . . 5 (𝑘 ∈ ℕ → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
34 2cn 11715 . . . . . . . . . 10 2 ∈ ℂ
35 hmopf 29653 . . . . . . . . . . 11 ((𝐹𝑘) ∈ HrmOp → (𝐹𝑘): ℋ⟶ ℋ)
3615, 35syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐹𝑘): ℋ⟶ ℋ)
37 homulcl 29538 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝐹𝑘): ℋ⟶ ℋ) → (2 ·op (𝐹𝑘)): ℋ⟶ ℋ)
3834, 36, 37sylancr 589 . . . . . . . . 9 (𝑘 ∈ ℕ → (2 ·op (𝐹𝑘)): ℋ⟶ ℋ)
39 hmopf 29653 . . . . . . . . . . 11 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
407, 39ax-mp 5 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
41 fco 6533 . . . . . . . . . . 11 (((𝐹𝑘): ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)
4236, 36, 41syl2anc 586 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)
43 hosubcl 29552 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
4440, 42, 43sylancr 589 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
45 hmopf 29653 . . . . . . . . . . . 12 ( Iop ∈ HrmOp → Iop : ℋ⟶ ℋ)
4613, 45ax-mp 5 . . . . . . . . . . 11 Iop : ℋ⟶ ℋ
47 homulcl 29538 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ Iop : ℋ⟶ ℋ) → (2 ·op Iop ): ℋ⟶ ℋ)
4834, 46, 47mp2an 690 . . . . . . . . . 10 (2 ·op Iop ): ℋ⟶ ℋ
49 hosubsub4 29597 . . . . . . . . . 10 (((2 ·op Iop ): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
5048, 49mp3an1 1444 . . . . . . . . 9 (((2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
5138, 44, 50syl2anc 586 . . . . . . . 8 (𝑘 ∈ ℕ → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
52 hosubcl 29552 . . . . . . . . . . . . . . 15 ((((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ)
5342, 38, 52syl2anc 586 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ)
54 hoadd32 29562 . . . . . . . . . . . . . . 15 (( Iop : ℋ⟶ ℋ ∧ (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ ∧ Iop : ℋ⟶ ℋ) → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
5546, 46, 54mp3an13 1448 . . . . . . . . . . . . . 14 ((((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
5653, 55syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
57 ho2times 29598 . . . . . . . . . . . . . . 15 ( Iop : ℋ⟶ ℋ → (2 ·op Iop ) = ( Iop +op Iop ))
5846, 57ax-mp 5 . . . . . . . . . . . . . 14 (2 ·op Iop ) = ( Iop +op Iop )
5958oveq1i 7168 . . . . . . . . . . . . 13 ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))))
6056, 59syl6eqr 2876 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
61 hoaddsubass 29594 . . . . . . . . . . . . . 14 (((2 ·op Iop ): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
6248, 61mp3an1 1444 . . . . . . . . . . . . 13 ((((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
6342, 38, 62syl2anc 586 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
6460, 63eqtr4d 2861 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))))
6564oveq1d 7173 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇))
66 hoaddcl 29537 . . . . . . . . . . . 12 (( Iop : ℋ⟶ ℋ ∧ (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ) → ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ)
6746, 53, 66sylancr 589 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ)
68 hoaddsubass 29594 . . . . . . . . . . . 12 ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ ∧ Iop : ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
6946, 40, 68mp3an23 1449 . . . . . . . . . . 11 (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
7067, 69syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
71 hoaddcl 29537 . . . . . . . . . . . 12 (((2 ·op Iop ): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → ((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
7248, 42, 71sylancr 589 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
73 hosubsub4 29597 . . . . . . . . . . . 12 ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7440, 73mp3an3 1446 . . . . . . . . . . 11 ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7572, 38, 74syl2anc 586 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7665, 70, 753eqtr3d 2866 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
77 hosubadd4 29593 . . . . . . . . . . . 12 ((((2 ·op Iop ): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7840, 77mpanr1 701 . . . . . . . . . . 11 ((((2 ·op Iop ): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7948, 78mpanl1 698 . . . . . . . . . 10 (((2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
8038, 42, 79syl2anc 586 . . . . . . . . 9 (𝑘 ∈ ℕ → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
8176, 80eqtr4d 2861 . . . . . . . 8 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))
82 halfcn 11855 . . . . . . . . . . . 12 (1 / 2) ∈ ℂ
83 homulcl 29538 . . . . . . . . . . . 12 (((1 / 2) ∈ ℂ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ)
8482, 44, 83sylancr 589 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ)
85 hoadddi 29582 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ (𝐹𝑘): ℋ⟶ ℋ ∧ ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ) → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
8634, 85mp3an1 1444 . . . . . . . . . . 11 (((𝐹𝑘): ℋ⟶ ℋ ∧ ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ) → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
8736, 84, 86syl2anc 586 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
88 2ne0 11744 . . . . . . . . . . . . . 14 2 ≠ 0
8934, 88recidi 11373 . . . . . . . . . . . . 13 (2 · (1 / 2)) = 1
9089oveq1i 7168 . . . . . . . . . . . 12 ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (1 ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
91 homulass 29581 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
9234, 82, 91mp3an12 1447 . . . . . . . . . . . . 13 ((𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ → ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
9344, 92syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
94 homulid2 29579 . . . . . . . . . . . . 13 ((𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ → (1 ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
9544, 94syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
9690, 93, 953eqtr3a 2882 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))) = (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
9796oveq2d 7174 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))
9887, 97eqtrd 2858 . . . . . . . . 9 (𝑘 ∈ ℕ → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))
9998oveq2d 7174 . . . . . . . 8 (𝑘 ∈ ℕ → ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
10051, 81, 993eqtr4d 2868 . . . . . . 7 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
101 hoaddcl 29537 . . . . . . . . 9 (((𝐹𝑘): ℋ⟶ ℋ ∧ ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ) → ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ)
10236, 84, 101syl2anc 586 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ)
103 hosubdi 29587 . . . . . . . . 9 ((2 ∈ ℂ ∧ Iop : ℋ⟶ ℋ ∧ ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ) → (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
10434, 46, 103mp3an12 1447 . . . . . . . 8 (((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ → (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
105102, 104syl 17 . . . . . . 7 (𝑘 ∈ ℕ → (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
106100, 105eqtr4d 2861 . . . . . 6 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
107 hosubcl 29552 . . . . . . . . . 10 (( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ( Iopop (𝐹𝑘)): ℋ⟶ ℋ)
10846, 36, 107sylancr 589 . . . . . . . . 9 (𝑘 ∈ ℕ → ( Iopop (𝐹𝑘)): ℋ⟶ ℋ)
109 hocsubdir 29564 . . . . . . . . . 10 (( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ ∧ ( Iopop (𝐹𝑘)): ℋ⟶ ℋ) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))))
11046, 109mp3an1 1444 . . . . . . . . 9 (((𝐹𝑘): ℋ⟶ ℋ ∧ ( Iopop (𝐹𝑘)): ℋ⟶ ℋ) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))))
11136, 108, 110syl2anc 586 . . . . . . . 8 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))))
112 hmoplin 29721 . . . . . . . . . . . . . . 15 ( Iop ∈ HrmOp → Iop ∈ LinOp)
11313, 112ax-mp 5 . . . . . . . . . . . . . 14 Iop ∈ LinOp
114 hoddi 29769 . . . . . . . . . . . . . 14 (( Iop ∈ LinOp ∧ Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ( Iop ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))))
115113, 46, 114mp3an12 1447 . . . . . . . . . . . . 13 ((𝐹𝑘): ℋ⟶ ℋ → ( Iop ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))))
11636, 115syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ( Iop ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))))
11746hoid1i 29568 . . . . . . . . . . . . . 14 ( Iop ∘ Iop ) = Iop
118117a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ( Iop ∘ Iop ) = Iop )
119 hoico2 29536 . . . . . . . . . . . . . 14 ((𝐹𝑘): ℋ⟶ ℋ → ( Iop ∘ (𝐹𝑘)) = (𝐹𝑘))
12036, 119syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ( Iop ∘ (𝐹𝑘)) = (𝐹𝑘))
121118, 120oveq12d 7176 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))) = ( Iopop (𝐹𝑘)))
122116, 121eqtrd 2858 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ( Iop ∘ ( Iopop (𝐹𝑘))) = ( Iopop (𝐹𝑘)))
123 hmoplin 29721 . . . . . . . . . . . . . 14 ((𝐹𝑘) ∈ HrmOp → (𝐹𝑘) ∈ LinOp)
12415, 123syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ LinOp)
125 hoddi 29769 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ LinOp ∧ Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
12646, 125mp3an2 1445 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ LinOp ∧ (𝐹𝑘): ℋ⟶ ℋ) → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
127124, 36, 126syl2anc 586 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
128 hoico1 29535 . . . . . . . . . . . . . 14 ((𝐹𝑘): ℋ⟶ ℋ → ((𝐹𝑘) ∘ Iop ) = (𝐹𝑘))
12936, 128syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ Iop ) = (𝐹𝑘))
130129oveq1d 7173 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))) = ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
131127, 130eqtrd 2858 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
132122, 131oveq12d 7176 . . . . . . . . . 10 (𝑘 ∈ ℕ → (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))) = (( Iopop (𝐹𝑘)) −op ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘)))))
13336, 46jctil 522 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ))
134 hosubadd4 29593 . . . . . . . . . . 11 ((( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) ∧ ((𝐹𝑘): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)) → (( Iopop (𝐹𝑘)) −op ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
135133, 36, 42, 134syl12anc 834 . . . . . . . . . 10 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) −op ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
136132, 135eqtrd 2858 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
137 ho2times 29598 . . . . . . . . . . 11 ((𝐹𝑘): ℋ⟶ ℋ → (2 ·op (𝐹𝑘)) = ((𝐹𝑘) +op (𝐹𝑘)))
13836, 137syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 ·op (𝐹𝑘)) = ((𝐹𝑘) +op (𝐹𝑘)))
139138oveq2d 7174 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
140 hoaddsubass 29594 . . . . . . . . . . 11 (( Iop : ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
14146, 140mp3an1 1444 . . . . . . . . . 10 ((((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
14242, 38, 141syl2anc 586 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
143136, 139, 1423eqtr2d 2864 . . . . . . . 8 (𝑘 ∈ ℕ → (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
144111, 143eqtrd 2858 . . . . . . 7 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
145144oveq1d 7173 . . . . . 6 (𝑘 ∈ ℕ → ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
1467, 8, 9opsqrlem5 29923 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
147146oveq2d 7174 . . . . . . 7 (𝑘 ∈ ℕ → ( Iopop (𝐹‘(𝑘 + 1))) = ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
148147oveq2d 7174 . . . . . 6 (𝑘 ∈ ℕ → (2 ·op ( Iopop (𝐹‘(𝑘 + 1)))) = (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
149106, 145, 1483eqtr4d 2868 . . . . 5 (𝑘 ∈ ℕ → ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)) = (2 ·op ( Iopop (𝐹‘(𝑘 + 1)))))
15033, 149breqtrd 5094 . . . 4 (𝑘 ∈ ℕ → 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1)))))
151 peano2nn 11652 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
15214ffvelrni 6852 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ HrmOp)
153151, 152syl 17 . . . . . 6 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ HrmOp)
154 hmopd 29801 . . . . . 6 (( Iop ∈ HrmOp ∧ (𝐹‘(𝑘 + 1)) ∈ HrmOp) → ( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp)
15513, 153, 154sylancr 589 . . . . 5 (𝑘 ∈ ℕ → ( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp)
156 2re 11714 . . . . . 6 2 ∈ ℝ
157 2pos 11743 . . . . . 6 0 < 2
158 leopmul 29913 . . . . . 6 ((2 ∈ ℝ ∧ ( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp ∧ 0 < 2) → ( 0hopop ( Iopop (𝐹‘(𝑘 + 1))) ↔ 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1))))))
159156, 157, 158mp3an13 1448 . . . . 5 (( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp → ( 0hopop ( Iopop (𝐹‘(𝑘 + 1))) ↔ 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1))))))
160155, 159syl 17 . . . 4 (𝑘 ∈ ℕ → ( 0hopop ( Iopop (𝐹‘(𝑘 + 1))) ↔ 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1))))))
161150, 160mpbird 259 . . 3 (𝑘 ∈ ℕ → 0hopop ( Iopop (𝐹‘(𝑘 + 1))))
162 leop3 29904 . . . 4 (((𝐹‘(𝑘 + 1)) ∈ HrmOp ∧ Iop ∈ HrmOp) → ((𝐹‘(𝑘 + 1)) ≤op Iop ↔ 0hopop ( Iopop (𝐹‘(𝑘 + 1)))))
163153, 13, 162sylancl 588 . . 3 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤op Iop ↔ 0hopop ( Iopop (𝐹‘(𝑘 + 1)))))
164161, 163mpbird 259 . 2 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤op Iop )
1652, 4, 6, 12, 164nn1suc 11662 1 (𝑁 ∈ ℕ → (𝐹𝑁) ≤op Iop )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {csn 4569   class class class wbr 5068   × cxp 5555  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677   / cdiv 11299  cn 11640  2c2 11695  seqcseq 13372  chba 28698   +op chos 28717   ·op chot 28718  op chod 28719   0hop ch0o 28722   Iop chio 28723  LinOpclo 28726  HrmOpcho 28729  op cleo 28737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619  ax-hilex 28778  ax-hfvadd 28779  ax-hvcom 28780  ax-hvass 28781  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785  ax-hvmulass 28786  ax-hvdistr1 28787  ax-hvdistr2 28788  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863  ax-his4 28864  ax-hcompl 28981
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-cn 21837  df-cnp 21838  df-lm 21839  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cfil 23860  df-cau 23861  df-cmet 23862  df-grpo 28272  df-gid 28273  df-ginv 28274  df-gdiv 28275  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-vs 28378  df-nmcv 28379  df-ims 28380  df-dip 28480  df-ssp 28501  df-ph 28592  df-cbn 28642  df-hnorm 28747  df-hba 28748  df-hvsub 28750  df-hlim 28751  df-hcau 28752  df-sh 28986  df-ch 29000  df-oc 29031  df-ch0 29032  df-shs 29087  df-pjh 29174  df-hosum 29509  df-homul 29510  df-hodif 29511  df-h0op 29527  df-iop 29528  df-lnop 29620  df-hmop 29623  df-leop 29631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator