HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem6 Structured version   Visualization version   GIF version

Theorem opsqrlem6 30408
Description: Lemma for opsqri . (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem2.1 𝑇 ∈ HrmOp
opsqrlem2.2 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
opsqrlem2.3 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
opsqrlem6.4 𝑇op Iop
Assertion
Ref Expression
opsqrlem6 (𝑁 ∈ ℕ → (𝐹𝑁) ≤op Iop )
Distinct variable group:   𝑥,𝑦,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem opsqrlem6
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑗 = 1 → (𝐹𝑗) = (𝐹‘1))
21breq1d 5080 . 2 (𝑗 = 1 → ((𝐹𝑗) ≤op Iop ↔ (𝐹‘1) ≤op Iop ))
3 fveq2 6756 . . 3 (𝑗 = (𝑘 + 1) → (𝐹𝑗) = (𝐹‘(𝑘 + 1)))
43breq1d 5080 . 2 (𝑗 = (𝑘 + 1) → ((𝐹𝑗) ≤op Iop ↔ (𝐹‘(𝑘 + 1)) ≤op Iop ))
5 fveq2 6756 . . 3 (𝑗 = 𝑁 → (𝐹𝑗) = (𝐹𝑁))
65breq1d 5080 . 2 (𝑗 = 𝑁 → ((𝐹𝑗) ≤op Iop ↔ (𝐹𝑁) ≤op Iop ))
7 opsqrlem2.1 . . . 4 𝑇 ∈ HrmOp
8 opsqrlem2.2 . . . 4 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
9 opsqrlem2.3 . . . 4 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
107, 8, 9opsqrlem2 30404 . . 3 (𝐹‘1) = 0hop
11 idleop 30394 . . 3 0hopop Iop
1210, 11eqbrtri 5091 . 2 (𝐹‘1) ≤op Iop
13 idhmop 30245 . . . . . . . 8 Iop ∈ HrmOp
147, 8, 9opsqrlem4 30406 . . . . . . . . 9 𝐹:ℕ⟶HrmOp
1514ffvelrni 6942 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ HrmOp)
16 hmopd 30285 . . . . . . . 8 (( Iop ∈ HrmOp ∧ (𝐹𝑘) ∈ HrmOp) → ( Iopop (𝐹𝑘)) ∈ HrmOp)
1713, 15, 16sylancr 586 . . . . . . 7 (𝑘 ∈ ℕ → ( Iopop (𝐹𝑘)) ∈ HrmOp)
18 eqid 2738 . . . . . . . 8 (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘)))
19 hmopco 30286 . . . . . . . 8 ((( Iopop (𝐹𝑘)) ∈ HrmOp ∧ ( Iopop (𝐹𝑘)) ∈ HrmOp ∧ (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘)))) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp)
2018, 19mp3an3 1448 . . . . . . 7 ((( Iopop (𝐹𝑘)) ∈ HrmOp ∧ ( Iopop (𝐹𝑘)) ∈ HrmOp) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp)
2117, 17, 20syl2anc 583 . . . . . 6 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp)
22 leopsq 30392 . . . . . . 7 (( Iopop (𝐹𝑘)) ∈ HrmOp → 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))))
2317, 22syl 17 . . . . . 6 (𝑘 ∈ ℕ → 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))))
24 opsqrlem6.4 . . . . . . . 8 𝑇op Iop
25 leop3 30388 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ Iop ∈ HrmOp) → (𝑇op Iop ↔ 0hopop ( Iopop 𝑇)))
267, 13, 25mp2an 688 . . . . . . . 8 (𝑇op Iop ↔ 0hopop ( Iopop 𝑇))
2724, 26mpbi 229 . . . . . . 7 0hopop ( Iopop 𝑇)
28 hmopd 30285 . . . . . . . . 9 (( Iop ∈ HrmOp ∧ 𝑇 ∈ HrmOp) → ( Iopop 𝑇) ∈ HrmOp)
2913, 7, 28mp2an 688 . . . . . . . 8 ( Iopop 𝑇) ∈ HrmOp
30 leopadd 30395 . . . . . . . 8 ((((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp ∧ ( Iopop 𝑇) ∈ HrmOp) ∧ ( 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∧ 0hopop ( Iopop 𝑇))) → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
3129, 30mpanl2 697 . . . . . . 7 (((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp ∧ ( 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∧ 0hopop ( Iopop 𝑇))) → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
3227, 31mpanr2 700 . . . . . 6 (((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp ∧ 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘)))) → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
3321, 23, 32syl2anc 583 . . . . 5 (𝑘 ∈ ℕ → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
34 2cn 11978 . . . . . . . . . 10 2 ∈ ℂ
35 hmopf 30137 . . . . . . . . . . 11 ((𝐹𝑘) ∈ HrmOp → (𝐹𝑘): ℋ⟶ ℋ)
3615, 35syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐹𝑘): ℋ⟶ ℋ)
37 homulcl 30022 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝐹𝑘): ℋ⟶ ℋ) → (2 ·op (𝐹𝑘)): ℋ⟶ ℋ)
3834, 36, 37sylancr 586 . . . . . . . . 9 (𝑘 ∈ ℕ → (2 ·op (𝐹𝑘)): ℋ⟶ ℋ)
39 hmopf 30137 . . . . . . . . . . 11 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
407, 39ax-mp 5 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
41 fco 6608 . . . . . . . . . . 11 (((𝐹𝑘): ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)
4236, 36, 41syl2anc 583 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)
43 hosubcl 30036 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
4440, 42, 43sylancr 586 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
45 hmopf 30137 . . . . . . . . . . . 12 ( Iop ∈ HrmOp → Iop : ℋ⟶ ℋ)
4613, 45ax-mp 5 . . . . . . . . . . 11 Iop : ℋ⟶ ℋ
47 homulcl 30022 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ Iop : ℋ⟶ ℋ) → (2 ·op Iop ): ℋ⟶ ℋ)
4834, 46, 47mp2an 688 . . . . . . . . . 10 (2 ·op Iop ): ℋ⟶ ℋ
49 hosubsub4 30081 . . . . . . . . . 10 (((2 ·op Iop ): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
5048, 49mp3an1 1446 . . . . . . . . 9 (((2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
5138, 44, 50syl2anc 583 . . . . . . . 8 (𝑘 ∈ ℕ → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
52 hosubcl 30036 . . . . . . . . . . . . . . 15 ((((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ)
5342, 38, 52syl2anc 583 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ)
54 hoadd32 30046 . . . . . . . . . . . . . . 15 (( Iop : ℋ⟶ ℋ ∧ (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ ∧ Iop : ℋ⟶ ℋ) → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
5546, 46, 54mp3an13 1450 . . . . . . . . . . . . . 14 ((((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
5653, 55syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
57 ho2times 30082 . . . . . . . . . . . . . . 15 ( Iop : ℋ⟶ ℋ → (2 ·op Iop ) = ( Iop +op Iop ))
5846, 57ax-mp 5 . . . . . . . . . . . . . 14 (2 ·op Iop ) = ( Iop +op Iop )
5958oveq1i 7265 . . . . . . . . . . . . 13 ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))))
6056, 59eqtr4di 2797 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
61 hoaddsubass 30078 . . . . . . . . . . . . . 14 (((2 ·op Iop ): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
6248, 61mp3an1 1446 . . . . . . . . . . . . 13 ((((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
6342, 38, 62syl2anc 583 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
6460, 63eqtr4d 2781 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))))
6564oveq1d 7270 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇))
66 hoaddcl 30021 . . . . . . . . . . . 12 (( Iop : ℋ⟶ ℋ ∧ (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ) → ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ)
6746, 53, 66sylancr 586 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ)
68 hoaddsubass 30078 . . . . . . . . . . . 12 ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ ∧ Iop : ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
6946, 40, 68mp3an23 1451 . . . . . . . . . . 11 (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
7067, 69syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
71 hoaddcl 30021 . . . . . . . . . . . 12 (((2 ·op Iop ): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → ((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
7248, 42, 71sylancr 586 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
73 hosubsub4 30081 . . . . . . . . . . . 12 ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7440, 73mp3an3 1448 . . . . . . . . . . 11 ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7572, 38, 74syl2anc 583 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7665, 70, 753eqtr3d 2786 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
77 hosubadd4 30077 . . . . . . . . . . . 12 ((((2 ·op Iop ): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7840, 77mpanr1 699 . . . . . . . . . . 11 ((((2 ·op Iop ): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7948, 78mpanl1 696 . . . . . . . . . 10 (((2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
8038, 42, 79syl2anc 583 . . . . . . . . 9 (𝑘 ∈ ℕ → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
8176, 80eqtr4d 2781 . . . . . . . 8 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))
82 halfcn 12118 . . . . . . . . . . . 12 (1 / 2) ∈ ℂ
83 homulcl 30022 . . . . . . . . . . . 12 (((1 / 2) ∈ ℂ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ)
8482, 44, 83sylancr 586 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ)
85 hoadddi 30066 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ (𝐹𝑘): ℋ⟶ ℋ ∧ ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ) → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
8634, 85mp3an1 1446 . . . . . . . . . . 11 (((𝐹𝑘): ℋ⟶ ℋ ∧ ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ) → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
8736, 84, 86syl2anc 583 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
88 2ne0 12007 . . . . . . . . . . . . . 14 2 ≠ 0
8934, 88recidi 11636 . . . . . . . . . . . . 13 (2 · (1 / 2)) = 1
9089oveq1i 7265 . . . . . . . . . . . 12 ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (1 ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
91 homulass 30065 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
9234, 82, 91mp3an12 1449 . . . . . . . . . . . . 13 ((𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ → ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
9344, 92syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
94 homulid2 30063 . . . . . . . . . . . . 13 ((𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ → (1 ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
9544, 94syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
9690, 93, 953eqtr3a 2803 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))) = (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
9796oveq2d 7271 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))
9887, 97eqtrd 2778 . . . . . . . . 9 (𝑘 ∈ ℕ → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))
9998oveq2d 7271 . . . . . . . 8 (𝑘 ∈ ℕ → ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
10051, 81, 993eqtr4d 2788 . . . . . . 7 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
101 hoaddcl 30021 . . . . . . . . 9 (((𝐹𝑘): ℋ⟶ ℋ ∧ ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ) → ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ)
10236, 84, 101syl2anc 583 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ)
103 hosubdi 30071 . . . . . . . . 9 ((2 ∈ ℂ ∧ Iop : ℋ⟶ ℋ ∧ ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ) → (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
10434, 46, 103mp3an12 1449 . . . . . . . 8 (((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ → (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
105102, 104syl 17 . . . . . . 7 (𝑘 ∈ ℕ → (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
106100, 105eqtr4d 2781 . . . . . 6 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
107 hosubcl 30036 . . . . . . . . . 10 (( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ( Iopop (𝐹𝑘)): ℋ⟶ ℋ)
10846, 36, 107sylancr 586 . . . . . . . . 9 (𝑘 ∈ ℕ → ( Iopop (𝐹𝑘)): ℋ⟶ ℋ)
109 hocsubdir 30048 . . . . . . . . . 10 (( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ ∧ ( Iopop (𝐹𝑘)): ℋ⟶ ℋ) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))))
11046, 109mp3an1 1446 . . . . . . . . 9 (((𝐹𝑘): ℋ⟶ ℋ ∧ ( Iopop (𝐹𝑘)): ℋ⟶ ℋ) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))))
11136, 108, 110syl2anc 583 . . . . . . . 8 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))))
112 hmoplin 30205 . . . . . . . . . . . . . . 15 ( Iop ∈ HrmOp → Iop ∈ LinOp)
11313, 112ax-mp 5 . . . . . . . . . . . . . 14 Iop ∈ LinOp
114 hoddi 30253 . . . . . . . . . . . . . 14 (( Iop ∈ LinOp ∧ Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ( Iop ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))))
115113, 46, 114mp3an12 1449 . . . . . . . . . . . . 13 ((𝐹𝑘): ℋ⟶ ℋ → ( Iop ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))))
11636, 115syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ( Iop ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))))
11746hoid1i 30052 . . . . . . . . . . . . . 14 ( Iop ∘ Iop ) = Iop
118117a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ( Iop ∘ Iop ) = Iop )
119 hoico2 30020 . . . . . . . . . . . . . 14 ((𝐹𝑘): ℋ⟶ ℋ → ( Iop ∘ (𝐹𝑘)) = (𝐹𝑘))
12036, 119syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ( Iop ∘ (𝐹𝑘)) = (𝐹𝑘))
121118, 120oveq12d 7273 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))) = ( Iopop (𝐹𝑘)))
122116, 121eqtrd 2778 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ( Iop ∘ ( Iopop (𝐹𝑘))) = ( Iopop (𝐹𝑘)))
123 hmoplin 30205 . . . . . . . . . . . . . 14 ((𝐹𝑘) ∈ HrmOp → (𝐹𝑘) ∈ LinOp)
12415, 123syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ LinOp)
125 hoddi 30253 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ LinOp ∧ Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
12646, 125mp3an2 1447 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ LinOp ∧ (𝐹𝑘): ℋ⟶ ℋ) → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
127124, 36, 126syl2anc 583 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
128 hoico1 30019 . . . . . . . . . . . . . 14 ((𝐹𝑘): ℋ⟶ ℋ → ((𝐹𝑘) ∘ Iop ) = (𝐹𝑘))
12936, 128syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ Iop ) = (𝐹𝑘))
130129oveq1d 7270 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))) = ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
131127, 130eqtrd 2778 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
132122, 131oveq12d 7273 . . . . . . . . . 10 (𝑘 ∈ ℕ → (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))) = (( Iopop (𝐹𝑘)) −op ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘)))))
13336, 46jctil 519 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ))
134 hosubadd4 30077 . . . . . . . . . . 11 ((( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) ∧ ((𝐹𝑘): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)) → (( Iopop (𝐹𝑘)) −op ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
135133, 36, 42, 134syl12anc 833 . . . . . . . . . 10 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) −op ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
136132, 135eqtrd 2778 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
137 ho2times 30082 . . . . . . . . . . 11 ((𝐹𝑘): ℋ⟶ ℋ → (2 ·op (𝐹𝑘)) = ((𝐹𝑘) +op (𝐹𝑘)))
13836, 137syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 ·op (𝐹𝑘)) = ((𝐹𝑘) +op (𝐹𝑘)))
139138oveq2d 7271 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
140 hoaddsubass 30078 . . . . . . . . . . 11 (( Iop : ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
14146, 140mp3an1 1446 . . . . . . . . . 10 ((((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
14242, 38, 141syl2anc 583 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
143136, 139, 1423eqtr2d 2784 . . . . . . . 8 (𝑘 ∈ ℕ → (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
144111, 143eqtrd 2778 . . . . . . 7 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
145144oveq1d 7270 . . . . . 6 (𝑘 ∈ ℕ → ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
1467, 8, 9opsqrlem5 30407 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
147146oveq2d 7271 . . . . . . 7 (𝑘 ∈ ℕ → ( Iopop (𝐹‘(𝑘 + 1))) = ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
148147oveq2d 7271 . . . . . 6 (𝑘 ∈ ℕ → (2 ·op ( Iopop (𝐹‘(𝑘 + 1)))) = (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
149106, 145, 1483eqtr4d 2788 . . . . 5 (𝑘 ∈ ℕ → ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)) = (2 ·op ( Iopop (𝐹‘(𝑘 + 1)))))
15033, 149breqtrd 5096 . . . 4 (𝑘 ∈ ℕ → 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1)))))
151 peano2nn 11915 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
15214ffvelrni 6942 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ HrmOp)
153151, 152syl 17 . . . . . 6 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ HrmOp)
154 hmopd 30285 . . . . . 6 (( Iop ∈ HrmOp ∧ (𝐹‘(𝑘 + 1)) ∈ HrmOp) → ( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp)
15513, 153, 154sylancr 586 . . . . 5 (𝑘 ∈ ℕ → ( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp)
156 2re 11977 . . . . . 6 2 ∈ ℝ
157 2pos 12006 . . . . . 6 0 < 2
158 leopmul 30397 . . . . . 6 ((2 ∈ ℝ ∧ ( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp ∧ 0 < 2) → ( 0hopop ( Iopop (𝐹‘(𝑘 + 1))) ↔ 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1))))))
159156, 157, 158mp3an13 1450 . . . . 5 (( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp → ( 0hopop ( Iopop (𝐹‘(𝑘 + 1))) ↔ 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1))))))
160155, 159syl 17 . . . 4 (𝑘 ∈ ℕ → ( 0hopop ( Iopop (𝐹‘(𝑘 + 1))) ↔ 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1))))))
161150, 160mpbird 256 . . 3 (𝑘 ∈ ℕ → 0hopop ( Iopop (𝐹‘(𝑘 + 1))))
162 leop3 30388 . . . 4 (((𝐹‘(𝑘 + 1)) ∈ HrmOp ∧ Iop ∈ HrmOp) → ((𝐹‘(𝑘 + 1)) ≤op Iop ↔ 0hopop ( Iopop (𝐹‘(𝑘 + 1)))))
163153, 13, 162sylancl 585 . . 3 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤op Iop ↔ 0hopop ( Iopop (𝐹‘(𝑘 + 1)))))
164161, 163mpbird 256 . 2 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤op Iop )
1652, 4, 6, 12, 164nn1suc 11925 1 (𝑁 ∈ ℕ → (𝐹𝑁) ≤op Iop )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {csn 4558   class class class wbr 5070   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940   / cdiv 11562  cn 11903  2c2 11958  seqcseq 13649  chba 29182   +op chos 29201   ·op chot 29202  op chod 29203   0hop ch0o 29206   Iop chio 29207  LinOpclo 29210  HrmOpcho 29213  op cleo 29221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348  ax-hcompl 29465
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-lm 22288  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cfil 24324  df-cau 24325  df-cmet 24326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-dip 28964  df-ssp 28985  df-ph 29076  df-cbn 29126  df-hnorm 29231  df-hba 29232  df-hvsub 29234  df-hlim 29235  df-hcau 29236  df-sh 29470  df-ch 29484  df-oc 29515  df-ch0 29516  df-shs 29571  df-pjh 29658  df-hosum 29993  df-homul 29994  df-hodif 29995  df-h0op 30011  df-iop 30012  df-lnop 30104  df-hmop 30107  df-leop 30115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator