HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem6 Structured version   Visualization version   GIF version

Theorem opsqrlem6 29928
Description: Lemma for opsqri . (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem2.1 𝑇 ∈ HrmOp
opsqrlem2.2 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
opsqrlem2.3 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
opsqrlem6.4 𝑇op Iop
Assertion
Ref Expression
opsqrlem6 (𝑁 ∈ ℕ → (𝐹𝑁) ≤op Iop )
Distinct variable group:   𝑥,𝑦,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem opsqrlem6
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . 3 (𝑗 = 1 → (𝐹𝑗) = (𝐹‘1))
21breq1d 5040 . 2 (𝑗 = 1 → ((𝐹𝑗) ≤op Iop ↔ (𝐹‘1) ≤op Iop ))
3 fveq2 6645 . . 3 (𝑗 = (𝑘 + 1) → (𝐹𝑗) = (𝐹‘(𝑘 + 1)))
43breq1d 5040 . 2 (𝑗 = (𝑘 + 1) → ((𝐹𝑗) ≤op Iop ↔ (𝐹‘(𝑘 + 1)) ≤op Iop ))
5 fveq2 6645 . . 3 (𝑗 = 𝑁 → (𝐹𝑗) = (𝐹𝑁))
65breq1d 5040 . 2 (𝑗 = 𝑁 → ((𝐹𝑗) ≤op Iop ↔ (𝐹𝑁) ≤op Iop ))
7 opsqrlem2.1 . . . 4 𝑇 ∈ HrmOp
8 opsqrlem2.2 . . . 4 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
9 opsqrlem2.3 . . . 4 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
107, 8, 9opsqrlem2 29924 . . 3 (𝐹‘1) = 0hop
11 idleop 29914 . . 3 0hopop Iop
1210, 11eqbrtri 5051 . 2 (𝐹‘1) ≤op Iop
13 idhmop 29765 . . . . . . . 8 Iop ∈ HrmOp
147, 8, 9opsqrlem4 29926 . . . . . . . . 9 𝐹:ℕ⟶HrmOp
1514ffvelrni 6827 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ HrmOp)
16 hmopd 29805 . . . . . . . 8 (( Iop ∈ HrmOp ∧ (𝐹𝑘) ∈ HrmOp) → ( Iopop (𝐹𝑘)) ∈ HrmOp)
1713, 15, 16sylancr 590 . . . . . . 7 (𝑘 ∈ ℕ → ( Iopop (𝐹𝑘)) ∈ HrmOp)
18 eqid 2798 . . . . . . . 8 (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘)))
19 hmopco 29806 . . . . . . . 8 ((( Iopop (𝐹𝑘)) ∈ HrmOp ∧ ( Iopop (𝐹𝑘)) ∈ HrmOp ∧ (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘)))) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp)
2018, 19mp3an3 1447 . . . . . . 7 ((( Iopop (𝐹𝑘)) ∈ HrmOp ∧ ( Iopop (𝐹𝑘)) ∈ HrmOp) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp)
2117, 17, 20syl2anc 587 . . . . . 6 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp)
22 leopsq 29912 . . . . . . 7 (( Iopop (𝐹𝑘)) ∈ HrmOp → 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))))
2317, 22syl 17 . . . . . 6 (𝑘 ∈ ℕ → 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))))
24 opsqrlem6.4 . . . . . . . 8 𝑇op Iop
25 leop3 29908 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ Iop ∈ HrmOp) → (𝑇op Iop ↔ 0hopop ( Iopop 𝑇)))
267, 13, 25mp2an 691 . . . . . . . 8 (𝑇op Iop ↔ 0hopop ( Iopop 𝑇))
2724, 26mpbi 233 . . . . . . 7 0hopop ( Iopop 𝑇)
28 hmopd 29805 . . . . . . . . 9 (( Iop ∈ HrmOp ∧ 𝑇 ∈ HrmOp) → ( Iopop 𝑇) ∈ HrmOp)
2913, 7, 28mp2an 691 . . . . . . . 8 ( Iopop 𝑇) ∈ HrmOp
30 leopadd 29915 . . . . . . . 8 ((((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp ∧ ( Iopop 𝑇) ∈ HrmOp) ∧ ( 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∧ 0hopop ( Iopop 𝑇))) → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
3129, 30mpanl2 700 . . . . . . 7 (((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp ∧ ( 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∧ 0hopop ( Iopop 𝑇))) → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
3227, 31mpanr2 703 . . . . . 6 (((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp ∧ 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘)))) → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
3321, 23, 32syl2anc 587 . . . . 5 (𝑘 ∈ ℕ → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
34 2cn 11700 . . . . . . . . . 10 2 ∈ ℂ
35 hmopf 29657 . . . . . . . . . . 11 ((𝐹𝑘) ∈ HrmOp → (𝐹𝑘): ℋ⟶ ℋ)
3615, 35syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐹𝑘): ℋ⟶ ℋ)
37 homulcl 29542 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝐹𝑘): ℋ⟶ ℋ) → (2 ·op (𝐹𝑘)): ℋ⟶ ℋ)
3834, 36, 37sylancr 590 . . . . . . . . 9 (𝑘 ∈ ℕ → (2 ·op (𝐹𝑘)): ℋ⟶ ℋ)
39 hmopf 29657 . . . . . . . . . . 11 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
407, 39ax-mp 5 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
41 fco 6505 . . . . . . . . . . 11 (((𝐹𝑘): ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)
4236, 36, 41syl2anc 587 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)
43 hosubcl 29556 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
4440, 42, 43sylancr 590 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
45 hmopf 29657 . . . . . . . . . . . 12 ( Iop ∈ HrmOp → Iop : ℋ⟶ ℋ)
4613, 45ax-mp 5 . . . . . . . . . . 11 Iop : ℋ⟶ ℋ
47 homulcl 29542 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ Iop : ℋ⟶ ℋ) → (2 ·op Iop ): ℋ⟶ ℋ)
4834, 46, 47mp2an 691 . . . . . . . . . 10 (2 ·op Iop ): ℋ⟶ ℋ
49 hosubsub4 29601 . . . . . . . . . 10 (((2 ·op Iop ): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
5048, 49mp3an1 1445 . . . . . . . . 9 (((2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
5138, 44, 50syl2anc 587 . . . . . . . 8 (𝑘 ∈ ℕ → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
52 hosubcl 29556 . . . . . . . . . . . . . . 15 ((((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ)
5342, 38, 52syl2anc 587 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ)
54 hoadd32 29566 . . . . . . . . . . . . . . 15 (( Iop : ℋ⟶ ℋ ∧ (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ ∧ Iop : ℋ⟶ ℋ) → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
5546, 46, 54mp3an13 1449 . . . . . . . . . . . . . 14 ((((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
5653, 55syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
57 ho2times 29602 . . . . . . . . . . . . . . 15 ( Iop : ℋ⟶ ℋ → (2 ·op Iop ) = ( Iop +op Iop ))
5846, 57ax-mp 5 . . . . . . . . . . . . . 14 (2 ·op Iop ) = ( Iop +op Iop )
5958oveq1i 7145 . . . . . . . . . . . . 13 ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))))
6056, 59eqtr4di 2851 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
61 hoaddsubass 29598 . . . . . . . . . . . . . 14 (((2 ·op Iop ): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
6248, 61mp3an1 1445 . . . . . . . . . . . . 13 ((((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
6342, 38, 62syl2anc 587 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
6460, 63eqtr4d 2836 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))))
6564oveq1d 7150 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇))
66 hoaddcl 29541 . . . . . . . . . . . 12 (( Iop : ℋ⟶ ℋ ∧ (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ) → ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ)
6746, 53, 66sylancr 590 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ)
68 hoaddsubass 29598 . . . . . . . . . . . 12 ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ ∧ Iop : ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
6946, 40, 68mp3an23 1450 . . . . . . . . . . 11 (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
7067, 69syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
71 hoaddcl 29541 . . . . . . . . . . . 12 (((2 ·op Iop ): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → ((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
7248, 42, 71sylancr 590 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
73 hosubsub4 29601 . . . . . . . . . . . 12 ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7440, 73mp3an3 1447 . . . . . . . . . . 11 ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7572, 38, 74syl2anc 587 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7665, 70, 753eqtr3d 2841 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
77 hosubadd4 29597 . . . . . . . . . . . 12 ((((2 ·op Iop ): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7840, 77mpanr1 702 . . . . . . . . . . 11 ((((2 ·op Iop ): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7948, 78mpanl1 699 . . . . . . . . . 10 (((2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
8038, 42, 79syl2anc 587 . . . . . . . . 9 (𝑘 ∈ ℕ → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
8176, 80eqtr4d 2836 . . . . . . . 8 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))
82 halfcn 11840 . . . . . . . . . . . 12 (1 / 2) ∈ ℂ
83 homulcl 29542 . . . . . . . . . . . 12 (((1 / 2) ∈ ℂ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ)
8482, 44, 83sylancr 590 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ)
85 hoadddi 29586 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ (𝐹𝑘): ℋ⟶ ℋ ∧ ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ) → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
8634, 85mp3an1 1445 . . . . . . . . . . 11 (((𝐹𝑘): ℋ⟶ ℋ ∧ ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ) → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
8736, 84, 86syl2anc 587 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
88 2ne0 11729 . . . . . . . . . . . . . 14 2 ≠ 0
8934, 88recidi 11360 . . . . . . . . . . . . 13 (2 · (1 / 2)) = 1
9089oveq1i 7145 . . . . . . . . . . . 12 ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (1 ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
91 homulass 29585 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
9234, 82, 91mp3an12 1448 . . . . . . . . . . . . 13 ((𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ → ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
9344, 92syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
94 homulid2 29583 . . . . . . . . . . . . 13 ((𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ → (1 ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
9544, 94syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
9690, 93, 953eqtr3a 2857 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))) = (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
9796oveq2d 7151 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))
9887, 97eqtrd 2833 . . . . . . . . 9 (𝑘 ∈ ℕ → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))
9998oveq2d 7151 . . . . . . . 8 (𝑘 ∈ ℕ → ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
10051, 81, 993eqtr4d 2843 . . . . . . 7 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
101 hoaddcl 29541 . . . . . . . . 9 (((𝐹𝑘): ℋ⟶ ℋ ∧ ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ) → ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ)
10236, 84, 101syl2anc 587 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ)
103 hosubdi 29591 . . . . . . . . 9 ((2 ∈ ℂ ∧ Iop : ℋ⟶ ℋ ∧ ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ) → (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
10434, 46, 103mp3an12 1448 . . . . . . . 8 (((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ → (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
105102, 104syl 17 . . . . . . 7 (𝑘 ∈ ℕ → (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
106100, 105eqtr4d 2836 . . . . . 6 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
107 hosubcl 29556 . . . . . . . . . 10 (( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ( Iopop (𝐹𝑘)): ℋ⟶ ℋ)
10846, 36, 107sylancr 590 . . . . . . . . 9 (𝑘 ∈ ℕ → ( Iopop (𝐹𝑘)): ℋ⟶ ℋ)
109 hocsubdir 29568 . . . . . . . . . 10 (( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ ∧ ( Iopop (𝐹𝑘)): ℋ⟶ ℋ) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))))
11046, 109mp3an1 1445 . . . . . . . . 9 (((𝐹𝑘): ℋ⟶ ℋ ∧ ( Iopop (𝐹𝑘)): ℋ⟶ ℋ) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))))
11136, 108, 110syl2anc 587 . . . . . . . 8 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))))
112 hmoplin 29725 . . . . . . . . . . . . . . 15 ( Iop ∈ HrmOp → Iop ∈ LinOp)
11313, 112ax-mp 5 . . . . . . . . . . . . . 14 Iop ∈ LinOp
114 hoddi 29773 . . . . . . . . . . . . . 14 (( Iop ∈ LinOp ∧ Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ( Iop ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))))
115113, 46, 114mp3an12 1448 . . . . . . . . . . . . 13 ((𝐹𝑘): ℋ⟶ ℋ → ( Iop ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))))
11636, 115syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ( Iop ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))))
11746hoid1i 29572 . . . . . . . . . . . . . 14 ( Iop ∘ Iop ) = Iop
118117a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ( Iop ∘ Iop ) = Iop )
119 hoico2 29540 . . . . . . . . . . . . . 14 ((𝐹𝑘): ℋ⟶ ℋ → ( Iop ∘ (𝐹𝑘)) = (𝐹𝑘))
12036, 119syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ( Iop ∘ (𝐹𝑘)) = (𝐹𝑘))
121118, 120oveq12d 7153 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))) = ( Iopop (𝐹𝑘)))
122116, 121eqtrd 2833 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ( Iop ∘ ( Iopop (𝐹𝑘))) = ( Iopop (𝐹𝑘)))
123 hmoplin 29725 . . . . . . . . . . . . . 14 ((𝐹𝑘) ∈ HrmOp → (𝐹𝑘) ∈ LinOp)
12415, 123syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ LinOp)
125 hoddi 29773 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ LinOp ∧ Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
12646, 125mp3an2 1446 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ LinOp ∧ (𝐹𝑘): ℋ⟶ ℋ) → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
127124, 36, 126syl2anc 587 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
128 hoico1 29539 . . . . . . . . . . . . . 14 ((𝐹𝑘): ℋ⟶ ℋ → ((𝐹𝑘) ∘ Iop ) = (𝐹𝑘))
12936, 128syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ Iop ) = (𝐹𝑘))
130129oveq1d 7150 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))) = ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
131127, 130eqtrd 2833 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
132122, 131oveq12d 7153 . . . . . . . . . 10 (𝑘 ∈ ℕ → (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))) = (( Iopop (𝐹𝑘)) −op ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘)))))
13336, 46jctil 523 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ))
134 hosubadd4 29597 . . . . . . . . . . 11 ((( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) ∧ ((𝐹𝑘): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)) → (( Iopop (𝐹𝑘)) −op ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
135133, 36, 42, 134syl12anc 835 . . . . . . . . . 10 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) −op ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
136132, 135eqtrd 2833 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
137 ho2times 29602 . . . . . . . . . . 11 ((𝐹𝑘): ℋ⟶ ℋ → (2 ·op (𝐹𝑘)) = ((𝐹𝑘) +op (𝐹𝑘)))
13836, 137syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 ·op (𝐹𝑘)) = ((𝐹𝑘) +op (𝐹𝑘)))
139138oveq2d 7151 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
140 hoaddsubass 29598 . . . . . . . . . . 11 (( Iop : ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
14146, 140mp3an1 1445 . . . . . . . . . 10 ((((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
14242, 38, 141syl2anc 587 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
143136, 139, 1423eqtr2d 2839 . . . . . . . 8 (𝑘 ∈ ℕ → (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
144111, 143eqtrd 2833 . . . . . . 7 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
145144oveq1d 7150 . . . . . 6 (𝑘 ∈ ℕ → ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
1467, 8, 9opsqrlem5 29927 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
147146oveq2d 7151 . . . . . . 7 (𝑘 ∈ ℕ → ( Iopop (𝐹‘(𝑘 + 1))) = ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
148147oveq2d 7151 . . . . . 6 (𝑘 ∈ ℕ → (2 ·op ( Iopop (𝐹‘(𝑘 + 1)))) = (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
149106, 145, 1483eqtr4d 2843 . . . . 5 (𝑘 ∈ ℕ → ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)) = (2 ·op ( Iopop (𝐹‘(𝑘 + 1)))))
15033, 149breqtrd 5056 . . . 4 (𝑘 ∈ ℕ → 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1)))))
151 peano2nn 11637 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
15214ffvelrni 6827 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ HrmOp)
153151, 152syl 17 . . . . . 6 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ HrmOp)
154 hmopd 29805 . . . . . 6 (( Iop ∈ HrmOp ∧ (𝐹‘(𝑘 + 1)) ∈ HrmOp) → ( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp)
15513, 153, 154sylancr 590 . . . . 5 (𝑘 ∈ ℕ → ( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp)
156 2re 11699 . . . . . 6 2 ∈ ℝ
157 2pos 11728 . . . . . 6 0 < 2
158 leopmul 29917 . . . . . 6 ((2 ∈ ℝ ∧ ( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp ∧ 0 < 2) → ( 0hopop ( Iopop (𝐹‘(𝑘 + 1))) ↔ 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1))))))
159156, 157, 158mp3an13 1449 . . . . 5 (( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp → ( 0hopop ( Iopop (𝐹‘(𝑘 + 1))) ↔ 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1))))))
160155, 159syl 17 . . . 4 (𝑘 ∈ ℕ → ( 0hopop ( Iopop (𝐹‘(𝑘 + 1))) ↔ 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1))))))
161150, 160mpbird 260 . . 3 (𝑘 ∈ ℕ → 0hopop ( Iopop (𝐹‘(𝑘 + 1))))
162 leop3 29908 . . . 4 (((𝐹‘(𝑘 + 1)) ∈ HrmOp ∧ Iop ∈ HrmOp) → ((𝐹‘(𝑘 + 1)) ≤op Iop ↔ 0hopop ( Iopop (𝐹‘(𝑘 + 1)))))
163153, 13, 162sylancl 589 . . 3 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤op Iop ↔ 0hopop ( Iopop (𝐹‘(𝑘 + 1)))))
164161, 163mpbird 260 . 2 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤op Iop )
1652, 4, 6, 12, 164nn1suc 11647 1 (𝑁 ∈ ℕ → (𝐹𝑁) ≤op Iop )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {csn 4525   class class class wbr 5030   × cxp 5517  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664   / cdiv 11286  cn 11625  2c2 11680  seqcseq 13364  chba 28702   +op chos 28721   ·op chot 28722  op chod 28723   0hop ch0o 28726   Iop chio 28727  LinOpclo 28730  HrmOpcho 28733  op cleo 28741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793  ax-hfi 28862  ax-his1 28865  ax-his2 28866  ax-his3 28867  ax-his4 28868  ax-hcompl 28985
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-cn 21832  df-cnp 21833  df-lm 21834  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cfil 23859  df-cau 23860  df-cmet 23861  df-grpo 28276  df-gid 28277  df-ginv 28278  df-gdiv 28279  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-vs 28382  df-nmcv 28383  df-ims 28384  df-dip 28484  df-ssp 28505  df-ph 28596  df-cbn 28646  df-hnorm 28751  df-hba 28752  df-hvsub 28754  df-hlim 28755  df-hcau 28756  df-sh 28990  df-ch 29004  df-oc 29035  df-ch0 29036  df-shs 29091  df-pjh 29178  df-hosum 29513  df-homul 29514  df-hodif 29515  df-h0op 29531  df-iop 29532  df-lnop 29624  df-hmop 29627  df-leop 29635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator