HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem6 Structured version   Visualization version   GIF version

Theorem opsqrlem6 29576
Description: Lemma for opsqri . (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem2.1 𝑇 ∈ HrmOp
opsqrlem2.2 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
opsqrlem2.3 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
opsqrlem6.4 𝑇op Iop
Assertion
Ref Expression
opsqrlem6 (𝑁 ∈ ℕ → (𝐹𝑁) ≤op Iop )
Distinct variable group:   𝑥,𝑦,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem opsqrlem6
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6446 . . 3 (𝑗 = 1 → (𝐹𝑗) = (𝐹‘1))
21breq1d 4896 . 2 (𝑗 = 1 → ((𝐹𝑗) ≤op Iop ↔ (𝐹‘1) ≤op Iop ))
3 fveq2 6446 . . 3 (𝑗 = (𝑘 + 1) → (𝐹𝑗) = (𝐹‘(𝑘 + 1)))
43breq1d 4896 . 2 (𝑗 = (𝑘 + 1) → ((𝐹𝑗) ≤op Iop ↔ (𝐹‘(𝑘 + 1)) ≤op Iop ))
5 fveq2 6446 . . 3 (𝑗 = 𝑁 → (𝐹𝑗) = (𝐹𝑁))
65breq1d 4896 . 2 (𝑗 = 𝑁 → ((𝐹𝑗) ≤op Iop ↔ (𝐹𝑁) ≤op Iop ))
7 opsqrlem2.1 . . . 4 𝑇 ∈ HrmOp
8 opsqrlem2.2 . . . 4 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
9 opsqrlem2.3 . . . 4 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
107, 8, 9opsqrlem2 29572 . . 3 (𝐹‘1) = 0hop
11 idleop 29562 . . 3 0hopop Iop
1210, 11eqbrtri 4907 . 2 (𝐹‘1) ≤op Iop
13 idhmop 29413 . . . . . . . 8 Iop ∈ HrmOp
147, 8, 9opsqrlem4 29574 . . . . . . . . 9 𝐹:ℕ⟶HrmOp
1514ffvelrni 6622 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ HrmOp)
16 hmopd 29453 . . . . . . . 8 (( Iop ∈ HrmOp ∧ (𝐹𝑘) ∈ HrmOp) → ( Iopop (𝐹𝑘)) ∈ HrmOp)
1713, 15, 16sylancr 581 . . . . . . 7 (𝑘 ∈ ℕ → ( Iopop (𝐹𝑘)) ∈ HrmOp)
18 eqid 2778 . . . . . . . 8 (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘)))
19 hmopco 29454 . . . . . . . 8 ((( Iopop (𝐹𝑘)) ∈ HrmOp ∧ ( Iopop (𝐹𝑘)) ∈ HrmOp ∧ (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘)))) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp)
2018, 19mp3an3 1523 . . . . . . 7 ((( Iopop (𝐹𝑘)) ∈ HrmOp ∧ ( Iopop (𝐹𝑘)) ∈ HrmOp) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp)
2117, 17, 20syl2anc 579 . . . . . 6 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp)
22 leopsq 29560 . . . . . . 7 (( Iopop (𝐹𝑘)) ∈ HrmOp → 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))))
2317, 22syl 17 . . . . . 6 (𝑘 ∈ ℕ → 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))))
24 opsqrlem6.4 . . . . . . . 8 𝑇op Iop
25 leop3 29556 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ Iop ∈ HrmOp) → (𝑇op Iop ↔ 0hopop ( Iopop 𝑇)))
267, 13, 25mp2an 682 . . . . . . . 8 (𝑇op Iop ↔ 0hopop ( Iopop 𝑇))
2724, 26mpbi 222 . . . . . . 7 0hopop ( Iopop 𝑇)
28 hmopd 29453 . . . . . . . . 9 (( Iop ∈ HrmOp ∧ 𝑇 ∈ HrmOp) → ( Iopop 𝑇) ∈ HrmOp)
2913, 7, 28mp2an 682 . . . . . . . 8 ( Iopop 𝑇) ∈ HrmOp
30 leopadd 29563 . . . . . . . 8 ((((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp ∧ ( Iopop 𝑇) ∈ HrmOp) ∧ ( 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∧ 0hopop ( Iopop 𝑇))) → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
3129, 30mpanl2 691 . . . . . . 7 (((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp ∧ ( 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∧ 0hopop ( Iopop 𝑇))) → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
3227, 31mpanr2 694 . . . . . 6 (((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) ∈ HrmOp ∧ 0hopop (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘)))) → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
3321, 23, 32syl2anc 579 . . . . 5 (𝑘 ∈ ℕ → 0hopop ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)))
34 2cn 11450 . . . . . . . . . 10 2 ∈ ℂ
35 hmopf 29305 . . . . . . . . . . 11 ((𝐹𝑘) ∈ HrmOp → (𝐹𝑘): ℋ⟶ ℋ)
3615, 35syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐹𝑘): ℋ⟶ ℋ)
37 homulcl 29190 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝐹𝑘): ℋ⟶ ℋ) → (2 ·op (𝐹𝑘)): ℋ⟶ ℋ)
3834, 36, 37sylancr 581 . . . . . . . . 9 (𝑘 ∈ ℕ → (2 ·op (𝐹𝑘)): ℋ⟶ ℋ)
39 hmopf 29305 . . . . . . . . . . 11 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
407, 39ax-mp 5 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
41 fco 6308 . . . . . . . . . . 11 (((𝐹𝑘): ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)
4236, 36, 41syl2anc 579 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)
43 hosubcl 29204 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
4440, 42, 43sylancr 581 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
45 hmopf 29305 . . . . . . . . . . . 12 ( Iop ∈ HrmOp → Iop : ℋ⟶ ℋ)
4613, 45ax-mp 5 . . . . . . . . . . 11 Iop : ℋ⟶ ℋ
47 homulcl 29190 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ Iop : ℋ⟶ ℋ) → (2 ·op Iop ): ℋ⟶ ℋ)
4834, 46, 47mp2an 682 . . . . . . . . . 10 (2 ·op Iop ): ℋ⟶ ℋ
49 hosubsub4 29249 . . . . . . . . . 10 (((2 ·op Iop ): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
5048, 49mp3an1 1521 . . . . . . . . 9 (((2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
5138, 44, 50syl2anc 579 . . . . . . . 8 (𝑘 ∈ ℕ → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
52 hosubcl 29204 . . . . . . . . . . . . . . 15 ((((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ)
5342, 38, 52syl2anc 579 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ)
54 hoadd32 29214 . . . . . . . . . . . . . . 15 (( Iop : ℋ⟶ ℋ ∧ (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ ∧ Iop : ℋ⟶ ℋ) → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
5546, 46, 54mp3an13 1525 . . . . . . . . . . . . . 14 ((((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
5653, 55syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
57 ho2times 29250 . . . . . . . . . . . . . . 15 ( Iop : ℋ⟶ ℋ → (2 ·op Iop ) = ( Iop +op Iop ))
5846, 57ax-mp 5 . . . . . . . . . . . . . 14 (2 ·op Iop ) = ( Iop +op Iop )
5958oveq1i 6932 . . . . . . . . . . . . 13 ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) = (( Iop +op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))))
6056, 59syl6eqr 2832 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
61 hoaddsubass 29246 . . . . . . . . . . . . . 14 (((2 ·op Iop ): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
6248, 61mp3an1 1521 . . . . . . . . . . . . 13 ((((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
6342, 38, 62syl2anc 579 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ((2 ·op Iop ) +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
6460, 63eqtr4d 2817 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))))
6564oveq1d 6937 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇))
66 hoaddcl 29189 . . . . . . . . . . . 12 (( Iop : ℋ⟶ ℋ ∧ (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘))): ℋ⟶ ℋ) → ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ)
6746, 53, 66sylancr 581 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ)
68 hoaddsubass 29246 . . . . . . . . . . . 12 ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ ∧ Iop : ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
6946, 40, 68mp3an23 1526 . . . . . . . . . . 11 (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))): ℋ⟶ ℋ → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
7067, 69syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op Iop ) −op 𝑇) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
71 hoaddcl 29189 . . . . . . . . . . . 12 (((2 ·op Iop ): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → ((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
7248, 42, 71sylancr 581 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ)
73 hosubsub4 29249 . . . . . . . . . . . 12 ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7440, 73mp3an3 1523 . . . . . . . . . . 11 ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7572, 38, 74syl2anc 579 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) −op 𝑇) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7665, 70, 753eqtr3d 2822 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
77 hosubadd4 29245 . . . . . . . . . . . 12 ((((2 ·op Iop ): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7840, 77mpanr1 693 . . . . . . . . . . 11 ((((2 ·op Iop ): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
7948, 78mpanl1 690 . . . . . . . . . 10 (((2 ·op (𝐹𝑘)): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ) → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
8038, 42, 79syl2anc 579 . . . . . . . . 9 (𝑘 ∈ ℕ → (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (((2 ·op Iop ) +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((2 ·op (𝐹𝑘)) +op 𝑇)))
8176, 80eqtr4d 2817 . . . . . . . 8 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = (((2 ·op Iop ) −op (2 ·op (𝐹𝑘))) −op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))
82 halfcn 11597 . . . . . . . . . . . 12 (1 / 2) ∈ ℂ
83 homulcl 29190 . . . . . . . . . . . 12 (((1 / 2) ∈ ℂ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ)
8482, 44, 83sylancr 581 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ)
85 hoadddi 29234 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ (𝐹𝑘): ℋ⟶ ℋ ∧ ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ) → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
8634, 85mp3an1 1521 . . . . . . . . . . 11 (((𝐹𝑘): ℋ⟶ ℋ ∧ ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ) → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
8736, 84, 86syl2anc 579 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
88 2ne0 11486 . . . . . . . . . . . . . 14 2 ≠ 0
8934, 88recidi 11106 . . . . . . . . . . . . 13 (2 · (1 / 2)) = 1
9089oveq1i 6932 . . . . . . . . . . . 12 ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (1 ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
91 homulass 29233 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ) → ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
9234, 82, 91mp3an12 1524 . . . . . . . . . . . . 13 ((𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ → ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
9344, 92syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((2 · (1 / 2)) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
94 homulid2 29231 . . . . . . . . . . . . 13 ((𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))): ℋ⟶ ℋ → (1 ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
9544, 94syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
9690, 93, 953eqtr3a 2838 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))) = (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))
9796oveq2d 6938 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 ·op (𝐹𝑘)) +op (2 ·op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))
9887, 97eqtrd 2814 . . . . . . . . 9 (𝑘 ∈ ℕ → (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))) = ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))
9998oveq2d 6938 . . . . . . . 8 (𝑘 ∈ ℕ → ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op ((2 ·op (𝐹𝑘)) +op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
10051, 81, 993eqtr4d 2824 . . . . . . 7 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
101 hoaddcl 29189 . . . . . . . . 9 (((𝐹𝑘): ℋ⟶ ℋ ∧ ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))): ℋ⟶ ℋ) → ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ)
10236, 84, 101syl2anc 579 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ)
103 hosubdi 29239 . . . . . . . . 9 ((2 ∈ ℂ ∧ Iop : ℋ⟶ ℋ ∧ ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ) → (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
10434, 46, 103mp3an12 1524 . . . . . . . 8 (((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))): ℋ⟶ ℋ → (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
105102, 104syl 17 . . . . . . 7 (𝑘 ∈ ℕ → (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))) = ((2 ·op Iop ) −op (2 ·op ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
106100, 105eqtr4d 2817 . . . . . 6 (𝑘 ∈ ℕ → (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)) = (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
107 hosubcl 29204 . . . . . . . . . 10 (( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ( Iopop (𝐹𝑘)): ℋ⟶ ℋ)
10846, 36, 107sylancr 581 . . . . . . . . 9 (𝑘 ∈ ℕ → ( Iopop (𝐹𝑘)): ℋ⟶ ℋ)
109 hocsubdir 29216 . . . . . . . . . 10 (( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ ∧ ( Iopop (𝐹𝑘)): ℋ⟶ ℋ) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))))
11046, 109mp3an1 1521 . . . . . . . . 9 (((𝐹𝑘): ℋ⟶ ℋ ∧ ( Iopop (𝐹𝑘)): ℋ⟶ ℋ) → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))))
11136, 108, 110syl2anc 579 . . . . . . . 8 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))))
112 hmoplin 29373 . . . . . . . . . . . . . . 15 ( Iop ∈ HrmOp → Iop ∈ LinOp)
11313, 112ax-mp 5 . . . . . . . . . . . . . 14 Iop ∈ LinOp
114 hoddi 29421 . . . . . . . . . . . . . 14 (( Iop ∈ LinOp ∧ Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ( Iop ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))))
115113, 46, 114mp3an12 1524 . . . . . . . . . . . . 13 ((𝐹𝑘): ℋ⟶ ℋ → ( Iop ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))))
11636, 115syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ( Iop ∘ ( Iopop (𝐹𝑘))) = (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))))
11746hoid1i 29220 . . . . . . . . . . . . . 14 ( Iop ∘ Iop ) = Iop
118117a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ( Iop ∘ Iop ) = Iop )
119 hoico2 29188 . . . . . . . . . . . . . 14 ((𝐹𝑘): ℋ⟶ ℋ → ( Iop ∘ (𝐹𝑘)) = (𝐹𝑘))
12036, 119syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ( Iop ∘ (𝐹𝑘)) = (𝐹𝑘))
121118, 120oveq12d 6940 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (( Iop ∘ Iop ) −op ( Iop ∘ (𝐹𝑘))) = ( Iopop (𝐹𝑘)))
122116, 121eqtrd 2814 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ( Iop ∘ ( Iopop (𝐹𝑘))) = ( Iopop (𝐹𝑘)))
123 hmoplin 29373 . . . . . . . . . . . . . 14 ((𝐹𝑘) ∈ HrmOp → (𝐹𝑘) ∈ LinOp)
12415, 123syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ LinOp)
125 hoddi 29421 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ LinOp ∧ Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
12646, 125mp3an2 1522 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ LinOp ∧ (𝐹𝑘): ℋ⟶ ℋ) → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
127124, 36, 126syl2anc 579 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
128 hoico1 29187 . . . . . . . . . . . . . 14 ((𝐹𝑘): ℋ⟶ ℋ → ((𝐹𝑘) ∘ Iop ) = (𝐹𝑘))
12936, 128syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ Iop ) = (𝐹𝑘))
130129oveq1d 6937 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((𝐹𝑘) ∘ Iop ) −op ((𝐹𝑘) ∘ (𝐹𝑘))) = ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
131127, 130eqtrd 2814 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘))) = ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘))))
132122, 131oveq12d 6940 . . . . . . . . . 10 (𝑘 ∈ ℕ → (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))) = (( Iopop (𝐹𝑘)) −op ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘)))))
13336, 46jctil 515 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ))
134 hosubadd4 29245 . . . . . . . . . . 11 ((( Iop : ℋ⟶ ℋ ∧ (𝐹𝑘): ℋ⟶ ℋ) ∧ ((𝐹𝑘): ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ)) → (( Iopop (𝐹𝑘)) −op ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
135133, 36, 42, 134syl12anc 827 . . . . . . . . . 10 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) −op ((𝐹𝑘) −op ((𝐹𝑘) ∘ (𝐹𝑘)))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
136132, 135eqtrd 2814 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
137 ho2times 29250 . . . . . . . . . . 11 ((𝐹𝑘): ℋ⟶ ℋ → (2 ·op (𝐹𝑘)) = ((𝐹𝑘) +op (𝐹𝑘)))
13836, 137syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 ·op (𝐹𝑘)) = ((𝐹𝑘) +op (𝐹𝑘)))
139138oveq2d 6938 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op ((𝐹𝑘) +op (𝐹𝑘))))
140 hoaddsubass 29246 . . . . . . . . . . 11 (( Iop : ℋ⟶ ℋ ∧ ((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
14146, 140mp3an1 1521 . . . . . . . . . 10 ((((𝐹𝑘) ∘ (𝐹𝑘)): ℋ⟶ ℋ ∧ (2 ·op (𝐹𝑘)): ℋ⟶ ℋ) → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
14242, 38, 141syl2anc 579 . . . . . . . . 9 (𝑘 ∈ ℕ → (( Iop +op ((𝐹𝑘) ∘ (𝐹𝑘))) −op (2 ·op (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
143136, 139, 1423eqtr2d 2820 . . . . . . . 8 (𝑘 ∈ ℕ → (( Iop ∘ ( Iopop (𝐹𝑘))) −op ((𝐹𝑘) ∘ ( Iopop (𝐹𝑘)))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
144111, 143eqtrd 2814 . . . . . . 7 (𝑘 ∈ ℕ → (( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) = ( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))))
145144oveq1d 6937 . . . . . 6 (𝑘 ∈ ℕ → ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)) = (( Iop +op (((𝐹𝑘) ∘ (𝐹𝑘)) −op (2 ·op (𝐹𝑘)))) +op ( Iopop 𝑇)))
1467, 8, 9opsqrlem5 29575 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))
147146oveq2d 6938 . . . . . . 7 (𝑘 ∈ ℕ → ( Iopop (𝐹‘(𝑘 + 1))) = ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘)))))))
148147oveq2d 6938 . . . . . 6 (𝑘 ∈ ℕ → (2 ·op ( Iopop (𝐹‘(𝑘 + 1)))) = (2 ·op ( Iopop ((𝐹𝑘) +op ((1 / 2) ·op (𝑇op ((𝐹𝑘) ∘ (𝐹𝑘))))))))
149106, 145, 1483eqtr4d 2824 . . . . 5 (𝑘 ∈ ℕ → ((( Iopop (𝐹𝑘)) ∘ ( Iopop (𝐹𝑘))) +op ( Iopop 𝑇)) = (2 ·op ( Iopop (𝐹‘(𝑘 + 1)))))
15033, 149breqtrd 4912 . . . 4 (𝑘 ∈ ℕ → 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1)))))
151 peano2nn 11388 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
15214ffvelrni 6622 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ HrmOp)
153151, 152syl 17 . . . . . 6 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ HrmOp)
154 hmopd 29453 . . . . . 6 (( Iop ∈ HrmOp ∧ (𝐹‘(𝑘 + 1)) ∈ HrmOp) → ( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp)
15513, 153, 154sylancr 581 . . . . 5 (𝑘 ∈ ℕ → ( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp)
156 2re 11449 . . . . . 6 2 ∈ ℝ
157 2pos 11485 . . . . . 6 0 < 2
158 leopmul 29565 . . . . . 6 ((2 ∈ ℝ ∧ ( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp ∧ 0 < 2) → ( 0hopop ( Iopop (𝐹‘(𝑘 + 1))) ↔ 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1))))))
159156, 157, 158mp3an13 1525 . . . . 5 (( Iopop (𝐹‘(𝑘 + 1))) ∈ HrmOp → ( 0hopop ( Iopop (𝐹‘(𝑘 + 1))) ↔ 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1))))))
160155, 159syl 17 . . . 4 (𝑘 ∈ ℕ → ( 0hopop ( Iopop (𝐹‘(𝑘 + 1))) ↔ 0hopop (2 ·op ( Iopop (𝐹‘(𝑘 + 1))))))
161150, 160mpbird 249 . . 3 (𝑘 ∈ ℕ → 0hopop ( Iopop (𝐹‘(𝑘 + 1))))
162 leop3 29556 . . . 4 (((𝐹‘(𝑘 + 1)) ∈ HrmOp ∧ Iop ∈ HrmOp) → ((𝐹‘(𝑘 + 1)) ≤op Iop ↔ 0hopop ( Iopop (𝐹‘(𝑘 + 1)))))
163153, 13, 162sylancl 580 . . 3 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤op Iop ↔ 0hopop ( Iopop (𝐹‘(𝑘 + 1)))))
164161, 163mpbird 249 . 2 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤op Iop )
1652, 4, 6, 12, 164nn1suc 11397 1 (𝑁 ∈ ℕ → (𝐹𝑁) ≤op Iop )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  {csn 4398   class class class wbr 4886   × cxp 5353  ccom 5359  wf 6131  cfv 6135  (class class class)co 6922  cmpt2 6924  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411   / cdiv 11032  cn 11374  2c2 11430  seqcseq 13119  chba 28348   +op chos 28367   ·op chot 28368  op chod 28369   0hop ch0o 28372   Iop chio 28373  LinOpclo 28376  HrmOpcho 28379  op cleo 28387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cc 9592  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352  ax-hilex 28428  ax-hfvadd 28429  ax-hvcom 28430  ax-hvass 28431  ax-hv0cl 28432  ax-hvaddid 28433  ax-hfvmul 28434  ax-hvmulid 28435  ax-hvmulass 28436  ax-hvdistr1 28437  ax-hvdistr2 28438  ax-hvmul0 28439  ax-hfi 28508  ax-his1 28511  ax-his2 28512  ax-his3 28513  ax-his4 28514  ax-hcompl 28631
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-omul 7848  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-acn 9101  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-cn 21439  df-cnp 21440  df-lm 21441  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cfil 23461  df-cau 23462  df-cmet 23463  df-grpo 27920  df-gid 27921  df-ginv 27922  df-gdiv 27923  df-ablo 27972  df-vc 27986  df-nv 28019  df-va 28022  df-ba 28023  df-sm 28024  df-0v 28025  df-vs 28026  df-nmcv 28027  df-ims 28028  df-dip 28128  df-ssp 28149  df-ph 28240  df-cbn 28291  df-hnorm 28397  df-hba 28398  df-hvsub 28400  df-hlim 28401  df-hcau 28402  df-sh 28636  df-ch 28650  df-oc 28681  df-ch0 28682  df-shs 28739  df-pjh 28826  df-hosum 29161  df-homul 29162  df-hodif 29163  df-h0op 29179  df-iop 29180  df-lnop 29272  df-hmop 29275  df-leop 29283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator