Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ptrecube Structured version   Visualization version   GIF version

Theorem ptrecube 37649
Description: Any point in an open set of N-space is surrounded by an open cube within that set. (Contributed by Brendan Leahy, 21-Aug-2020.) (Proof shortened by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ptrecube.r 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
ptrecube.d 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
ptrecube ((𝑆𝑅𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
Distinct variable groups:   𝑛,𝑑,𝑁   𝑃,𝑑,𝑛   𝑆,𝑑,𝑛
Allowed substitution hints:   𝐷(𝑛,𝑑)   𝑅(𝑛,𝑑)

Proof of Theorem ptrecube
Dummy variables 𝑔 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptrecube.r . . . 4 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
2 fzfi 13995 . . . . 5 (1...𝑁) ∈ Fin
3 retop 24705 . . . . . 6 (topGen‘ran (,)) ∈ Top
4 fnconstg 6771 . . . . . 6 ((topGen‘ran (,)) ∈ Top → ((1...𝑁) × {(topGen‘ran (,))}) Fn (1...𝑁))
53, 4ax-mp 5 . . . . 5 ((1...𝑁) × {(topGen‘ran (,))}) Fn (1...𝑁)
6 eqid 2736 . . . . . 6 {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} = {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}
76ptval 23513 . . . . 5 (((1...𝑁) ∈ Fin ∧ ((1...𝑁) × {(topGen‘ran (,))}) Fn (1...𝑁)) → (∏t‘((1...𝑁) × {(topGen‘ran (,))})) = (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}))
82, 5, 7mp2an 692 . . . 4 (∏t‘((1...𝑁) × {(topGen‘ran (,))})) = (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))})
91, 8eqtri 2759 . . 3 𝑅 = (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))})
109eleq2i 2827 . 2 (𝑆𝑅𝑆 ∈ (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}))
11 tg2 22908 . . 3 ((𝑆 ∈ (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}) ∧ 𝑃𝑆) → ∃𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} (𝑃𝑧𝑧𝑆))
126elpt 23515 . . . . 5 (𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} ↔ ∃𝑔((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛)))
13 fvex 6894 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) ∈ V
1413fvconst2 7201 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) = (topGen‘ran (,)))
1514eleq2d 2821 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → ((𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↔ (𝑔𝑛) ∈ (topGen‘ran (,))))
1615ralbiia 3081 . . . . . . . . . . . 12 (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)))
17 elixp2 8920 . . . . . . . . . . . . . 14 (𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ↔ (𝑃 ∈ V ∧ 𝑃 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛)))
1817simp3bi 1147 . . . . . . . . . . . . 13 (𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛))
19 r19.26 3099 . . . . . . . . . . . . . 14 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) ↔ (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)) ∧ ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛)))
20 uniretop 24706 . . . . . . . . . . . . . . . . . . . . 21 ℝ = (topGen‘ran (,))
2120eltopss 22850 . . . . . . . . . . . . . . . . . . . 20 (((topGen‘ran (,)) ∈ Top ∧ (𝑔𝑛) ∈ (topGen‘ran (,))) → (𝑔𝑛) ⊆ ℝ)
223, 21mpan 690 . . . . . . . . . . . . . . . . . . 19 ((𝑔𝑛) ∈ (topGen‘ran (,)) → (𝑔𝑛) ⊆ ℝ)
2322sselda 3963 . . . . . . . . . . . . . . . . . 18 (((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → (𝑃𝑛) ∈ ℝ)
24 ptrecube.d . . . . . . . . . . . . . . . . . . . 20 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
2524rexmet 24735 . . . . . . . . . . . . . . . . . . 19 𝐷 ∈ (∞Met‘ℝ)
26 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2724, 26tgioo 24740 . . . . . . . . . . . . . . . . . . . 20 (topGen‘ran (,)) = (MetOpen‘𝐷)
2827mopni2 24437 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (∞Met‘ℝ) ∧ (𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑦 ∈ ℝ+ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛))
2925, 28mp3an1 1450 . . . . . . . . . . . . . . . . . 18 (((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑦 ∈ ℝ+ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛))
30 r19.42v 3177 . . . . . . . . . . . . . . . . . 18 (∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)) ↔ ((𝑃𝑛) ∈ ℝ ∧ ∃𝑦 ∈ ℝ+ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)))
3123, 29, 30sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)))
3231ralimi 3074 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∀𝑛 ∈ (1...𝑁)∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)))
33 oveq2 7418 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑛) → ((𝑃𝑛)(ball‘𝐷)𝑦) = ((𝑃𝑛)(ball‘𝐷)(𝑛)))
3433sseq1d 3995 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑛) → (((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛) ↔ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛)))
3534anbi2d 630 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑛) → (((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)) ↔ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))))
3635ac6sfi 9297 . . . . . . . . . . . . . . . 16 (((1...𝑁) ∈ Fin ∧ ∀𝑛 ∈ (1...𝑁)∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛))) → ∃(:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))))
372, 32, 36sylancr 587 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃(:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))))
38 1rp 13017 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ+
3938a1i 11 . . . . . . . . . . . . . . . . . . 19 ((:(1...𝑁)⟶ℝ+ ∧ (1...𝑁) = ∅) → 1 ∈ ℝ+)
40 frn 6718 . . . . . . . . . . . . . . . . . . . . 21 (:(1...𝑁)⟶ℝ+ → ran ⊆ ℝ+)
4140adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ⊆ ℝ+)
42 ffn 6711 . . . . . . . . . . . . . . . . . . . . . . . 24 (:(1...𝑁)⟶ℝ+ Fn (1...𝑁))
43 fnfi 9197 . . . . . . . . . . . . . . . . . . . . . . . 24 (( Fn (1...𝑁) ∧ (1...𝑁) ∈ Fin) → ∈ Fin)
4442, 2, 43sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 (:(1...𝑁)⟶ℝ+ ∈ Fin)
45 rnfi 9357 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ Fin → ran ∈ Fin)
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (:(1...𝑁)⟶ℝ+ → ran ∈ Fin)
4746adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ∈ Fin)
48 dm0rn0 5909 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom = ∅ ↔ ran = ∅)
49 fdm 6720 . . . . . . . . . . . . . . . . . . . . . . . . 25 (:(1...𝑁)⟶ℝ+ → dom = (1...𝑁))
5049eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (:(1...𝑁)⟶ℝ+ → (dom = ∅ ↔ (1...𝑁) = ∅))
5148, 50bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . 23 (:(1...𝑁)⟶ℝ+ → (ran = ∅ ↔ (1...𝑁) = ∅))
5251necon3abid 2969 . . . . . . . . . . . . . . . . . . . . . 22 (:(1...𝑁)⟶ℝ+ → (ran ≠ ∅ ↔ ¬ (1...𝑁) = ∅))
5352biimpar 477 . . . . . . . . . . . . . . . . . . . . 21 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ≠ ∅)
54 rpssre 13021 . . . . . . . . . . . . . . . . . . . . . . 23 + ⊆ ℝ
5540, 54sstrdi 3976 . . . . . . . . . . . . . . . . . . . . . 22 (:(1...𝑁)⟶ℝ+ → ran ⊆ ℝ)
5655adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ⊆ ℝ)
57 ltso 11320 . . . . . . . . . . . . . . . . . . . . . 22 < Or ℝ
58 fiinfcl 9520 . . . . . . . . . . . . . . . . . . . . . 22 (( < Or ℝ ∧ (ran ∈ Fin ∧ ran ≠ ∅ ∧ ran ⊆ ℝ)) → inf(ran , ℝ, < ) ∈ ran )
5957, 58mpan 690 . . . . . . . . . . . . . . . . . . . . 21 ((ran ∈ Fin ∧ ran ≠ ∅ ∧ ran ⊆ ℝ) → inf(ran , ℝ, < ) ∈ ran )
6047, 53, 56, 59syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → inf(ran , ℝ, < ) ∈ ran )
6141, 60sseldd 3964 . . . . . . . . . . . . . . . . . . 19 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → inf(ran , ℝ, < ) ∈ ℝ+)
6239, 61ifclda 4541 . . . . . . . . . . . . . . . . . 18 (:(1...𝑁)⟶ℝ+ → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+)
6362adantr 480 . . . . . . . . . . . . . . . . 17 ((:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+)
6462adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+)
6564rpxrd 13057 . . . . . . . . . . . . . . . . . . . . . . 23 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ*)
66 ffvelcdm 7076 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ℝ+)
6766rpxrd 13057 . . . . . . . . . . . . . . . . . . . . . . 23 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ℝ*)
68 ne0i 4321 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (1...𝑁) → (1...𝑁) ≠ ∅)
69 ifnefalse 4517 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1...𝑁) ≠ ∅ → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) = inf(ran , ℝ, < ))
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (1...𝑁) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) = inf(ran , ℝ, < ))
7170adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) = inf(ran , ℝ, < ))
7255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → ran ⊆ ℝ)
73 0re 11242 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
74 rpge0 13027 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℝ+ → 0 ≤ 𝑦)
7574rgen 3054 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑦 ∈ ℝ+ 0 ≤ 𝑦
76 ssralv 4032 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran ⊆ ℝ+ → (∀𝑦 ∈ ℝ+ 0 ≤ 𝑦 → ∀𝑦 ∈ ran 0 ≤ 𝑦))
7740, 75, 76mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (:(1...𝑁)⟶ℝ+ → ∀𝑦 ∈ ran 0 ≤ 𝑦)
78 breq1 5127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
7978ralbidv 3164 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 0 → (∀𝑦 ∈ ran 𝑥𝑦 ↔ ∀𝑦 ∈ ran 0 ≤ 𝑦))
8079rspcev 3606 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ ∀𝑦 ∈ ran 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦)
8173, 77, 80sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (:(1...𝑁)⟶ℝ+ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦)
8281adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦)
83 fnfvelrn 7075 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( Fn (1...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ran )
8442, 83sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ran )
85 infrelb 12232 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ran ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦 ∧ (𝑛) ∈ ran ) → inf(ran , ℝ, < ) ≤ (𝑛))
8672, 82, 84, 85syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → inf(ran , ℝ, < ) ≤ (𝑛))
8771, 86eqbrtrd 5146 . . . . . . . . . . . . . . . . . . . . . . 23 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛))
8865, 67, 87jca31 514 . . . . . . . . . . . . . . . . . . . . . 22 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛)))
89 ssbl 24367 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐷 ∈ (∞Met‘ℝ) ∧ (𝑃𝑛) ∈ ℝ) ∧ (if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛)) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
90893expb 1120 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐷 ∈ (∞Met‘ℝ) ∧ (𝑃𝑛) ∈ ℝ) ∧ ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛))) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
9125, 90mpanl1 700 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃𝑛) ∈ ℝ ∧ ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛))) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
9291ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 ((((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛)) ∧ (𝑃𝑛) ∈ ℝ) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
9388, 92sylan 580 . . . . . . . . . . . . . . . . . . . . 21 (((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) ∧ (𝑃𝑛) ∈ ℝ) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
94 sstr2 3970 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)) → (((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9593, 94syl 17 . . . . . . . . . . . . . . . . . . . 20 (((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) ∧ (𝑃𝑛) ∈ ℝ) → (((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9695expimpd 453 . . . . . . . . . . . . . . . . . . 19 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛)) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9796ralimdva 3153 . . . . . . . . . . . . . . . . . 18 (:(1...𝑁)⟶ℝ+ → (∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛)) → ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9897imp 406 . . . . . . . . . . . . . . . . 17 ((:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛))
9924fveq2i 6884 . . . . . . . . . . . . . . . . . . . . . 22 (ball‘𝐷) = (ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))
10099oveqi 7423 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) = ((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )))
101100sseq1i 3992 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛) ↔ ((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛))
102101ralbii 3083 . . . . . . . . . . . . . . . . . . 19 (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛) ↔ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛))
103 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑑𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)
104102, 103nfxfr 1853 . . . . . . . . . . . . . . . . . 18 𝑑𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)
105 oveq2 7418 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) → ((𝑃𝑛)(ball‘𝐷)𝑑) = ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))))
106105sseq1d 3995 . . . . . . . . . . . . . . . . . . 19 (𝑑 = if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) → (((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) ↔ ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
107106ralbidv 3164 . . . . . . . . . . . . . . . . . 18 (𝑑 = if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) → (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) ↔ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
108104, 107rspce 3595 . . . . . . . . . . . . . . . . 17 ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
10963, 98, 108syl2anc 584 . . . . . . . . . . . . . . . 16 ((:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
110109exlimiv 1930 . . . . . . . . . . . . . . 15 (∃(:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11137, 110syl 17 . . . . . . . . . . . . . 14 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11219, 111sylbir 235 . . . . . . . . . . . . 13 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)) ∧ ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11318, 112sylan2 593 . . . . . . . . . . . 12 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)) ∧ 𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11416, 113sylanb 581 . . . . . . . . . . 11 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ 𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
115 sstr2 3970 . . . . . . . . . . . . 13 (X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
116 ss2ixp 8929 . . . . . . . . . . . . 13 (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) → X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ X𝑛 ∈ (1...𝑁)(𝑔𝑛))
117115, 116syl11 33 . . . . . . . . . . . 12 (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆 → (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) → X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
118117reximdv 3156 . . . . . . . . . . 11 (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆 → (∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
119114, 118syl5com 31 . . . . . . . . . 10 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ 𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆 → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
120119expimpd 453 . . . . . . . . 9 (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) → ((𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ∧ X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
121 eleq2 2824 . . . . . . . . . . 11 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (𝑃𝑧𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)))
122 sseq1 3989 . . . . . . . . . . 11 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (𝑧𝑆X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆))
123121, 122anbi12d 632 . . . . . . . . . 10 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ((𝑃𝑧𝑧𝑆) ↔ (𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ∧ X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆)))
124123imbi1d 341 . . . . . . . . 9 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆) ↔ ((𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ∧ X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)))
125120, 124syl5ibrcom 247 . . . . . . . 8 (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) → (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)))
1261253ad2ant2 1134 . . . . . . 7 ((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) → (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)))
127126imp 406 . . . . . 6 (((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
128127exlimiv 1930 . . . . 5 (∃𝑔((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
12912, 128sylbi 217 . . . 4 (𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
130129rexlimiv 3135 . . 3 (∃𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} (𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
13111, 130syl 17 . 2 ((𝑆 ∈ (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}) ∧ 𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
13210, 131sylanb 581 1 ((𝑆𝑅𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  wss 3931  c0 4313  ifcif 4505  {csn 4606   cuni 4888   class class class wbr 5124   Or wor 5565   × cxp 5657  dom cdm 5659  ran crn 5660  cres 5661  ccom 5663   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  Xcixp 8916  Fincfn 8964  infcinf 9458  cr 11133  0cc0 11134  1c1 11135  *cxr 11273   < clt 11274  cle 11275  cmin 11471  +crp 13013  (,)cioo 13367  ...cfz 13529  abscabs 15258  topGenctg 17456  tcpt 17457  ∞Metcxmet 21305  ballcbl 21307  MetOpencmopn 21310  Topctop 22836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-topgen 17462  df-pt 17463  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889
This theorem is referenced by:  poimirlem29  37678
  Copyright terms: Public domain W3C validator