Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ptrecube Structured version   Visualization version   GIF version

Theorem ptrecube 37580
Description: Any point in an open set of N-space is surrounded by an open cube within that set. (Contributed by Brendan Leahy, 21-Aug-2020.) (Proof shortened by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ptrecube.r 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
ptrecube.d 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
ptrecube ((𝑆𝑅𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
Distinct variable groups:   𝑛,𝑑,𝑁   𝑃,𝑑,𝑛   𝑆,𝑑,𝑛
Allowed substitution hints:   𝐷(𝑛,𝑑)   𝑅(𝑛,𝑑)

Proof of Theorem ptrecube
Dummy variables 𝑔 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptrecube.r . . . 4 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
2 fzfi 14023 . . . . 5 (1...𝑁) ∈ Fin
3 retop 24803 . . . . . 6 (topGen‘ran (,)) ∈ Top
4 fnconstg 6809 . . . . . 6 ((topGen‘ran (,)) ∈ Top → ((1...𝑁) × {(topGen‘ran (,))}) Fn (1...𝑁))
53, 4ax-mp 5 . . . . 5 ((1...𝑁) × {(topGen‘ran (,))}) Fn (1...𝑁)
6 eqid 2740 . . . . . 6 {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} = {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}
76ptval 23599 . . . . 5 (((1...𝑁) ∈ Fin ∧ ((1...𝑁) × {(topGen‘ran (,))}) Fn (1...𝑁)) → (∏t‘((1...𝑁) × {(topGen‘ran (,))})) = (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}))
82, 5, 7mp2an 691 . . . 4 (∏t‘((1...𝑁) × {(topGen‘ran (,))})) = (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))})
91, 8eqtri 2768 . . 3 𝑅 = (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))})
109eleq2i 2836 . 2 (𝑆𝑅𝑆 ∈ (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}))
11 tg2 22993 . . 3 ((𝑆 ∈ (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}) ∧ 𝑃𝑆) → ∃𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} (𝑃𝑧𝑧𝑆))
126elpt 23601 . . . . 5 (𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} ↔ ∃𝑔((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛)))
13 fvex 6933 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) ∈ V
1413fvconst2 7241 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) = (topGen‘ran (,)))
1514eleq2d 2830 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → ((𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↔ (𝑔𝑛) ∈ (topGen‘ran (,))))
1615ralbiia 3097 . . . . . . . . . . . 12 (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)))
17 elixp2 8959 . . . . . . . . . . . . . 14 (𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ↔ (𝑃 ∈ V ∧ 𝑃 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛)))
1817simp3bi 1147 . . . . . . . . . . . . 13 (𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛))
19 r19.26 3117 . . . . . . . . . . . . . 14 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) ↔ (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)) ∧ ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛)))
20 uniretop 24804 . . . . . . . . . . . . . . . . . . . . 21 ℝ = (topGen‘ran (,))
2120eltopss 22934 . . . . . . . . . . . . . . . . . . . 20 (((topGen‘ran (,)) ∈ Top ∧ (𝑔𝑛) ∈ (topGen‘ran (,))) → (𝑔𝑛) ⊆ ℝ)
223, 21mpan 689 . . . . . . . . . . . . . . . . . . 19 ((𝑔𝑛) ∈ (topGen‘ran (,)) → (𝑔𝑛) ⊆ ℝ)
2322sselda 4008 . . . . . . . . . . . . . . . . . 18 (((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → (𝑃𝑛) ∈ ℝ)
24 ptrecube.d . . . . . . . . . . . . . . . . . . . 20 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
2524rexmet 24832 . . . . . . . . . . . . . . . . . . 19 𝐷 ∈ (∞Met‘ℝ)
26 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2724, 26tgioo 24837 . . . . . . . . . . . . . . . . . . . 20 (topGen‘ran (,)) = (MetOpen‘𝐷)
2827mopni2 24527 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (∞Met‘ℝ) ∧ (𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑦 ∈ ℝ+ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛))
2925, 28mp3an1 1448 . . . . . . . . . . . . . . . . . 18 (((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑦 ∈ ℝ+ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛))
30 r19.42v 3197 . . . . . . . . . . . . . . . . . 18 (∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)) ↔ ((𝑃𝑛) ∈ ℝ ∧ ∃𝑦 ∈ ℝ+ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)))
3123, 29, 30sylanbrc 582 . . . . . . . . . . . . . . . . 17 (((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)))
3231ralimi 3089 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∀𝑛 ∈ (1...𝑁)∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)))
33 oveq2 7456 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑛) → ((𝑃𝑛)(ball‘𝐷)𝑦) = ((𝑃𝑛)(ball‘𝐷)(𝑛)))
3433sseq1d 4040 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑛) → (((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛) ↔ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛)))
3534anbi2d 629 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑛) → (((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)) ↔ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))))
3635ac6sfi 9348 . . . . . . . . . . . . . . . 16 (((1...𝑁) ∈ Fin ∧ ∀𝑛 ∈ (1...𝑁)∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛))) → ∃(:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))))
372, 32, 36sylancr 586 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃(:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))))
38 1rp 13061 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ+
3938a1i 11 . . . . . . . . . . . . . . . . . . 19 ((:(1...𝑁)⟶ℝ+ ∧ (1...𝑁) = ∅) → 1 ∈ ℝ+)
40 frn 6754 . . . . . . . . . . . . . . . . . . . . 21 (:(1...𝑁)⟶ℝ+ → ran ⊆ ℝ+)
4140adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ⊆ ℝ+)
42 ffn 6747 . . . . . . . . . . . . . . . . . . . . . . . 24 (:(1...𝑁)⟶ℝ+ Fn (1...𝑁))
43 fnfi 9244 . . . . . . . . . . . . . . . . . . . . . . . 24 (( Fn (1...𝑁) ∧ (1...𝑁) ∈ Fin) → ∈ Fin)
4442, 2, 43sylancl 585 . . . . . . . . . . . . . . . . . . . . . . 23 (:(1...𝑁)⟶ℝ+ ∈ Fin)
45 rnfi 9408 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ Fin → ran ∈ Fin)
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (:(1...𝑁)⟶ℝ+ → ran ∈ Fin)
4746adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ∈ Fin)
48 dm0rn0 5949 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom = ∅ ↔ ran = ∅)
49 fdm 6756 . . . . . . . . . . . . . . . . . . . . . . . . 25 (:(1...𝑁)⟶ℝ+ → dom = (1...𝑁))
5049eqeq1d 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 (:(1...𝑁)⟶ℝ+ → (dom = ∅ ↔ (1...𝑁) = ∅))
5148, 50bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . 23 (:(1...𝑁)⟶ℝ+ → (ran = ∅ ↔ (1...𝑁) = ∅))
5251necon3abid 2983 . . . . . . . . . . . . . . . . . . . . . 22 (:(1...𝑁)⟶ℝ+ → (ran ≠ ∅ ↔ ¬ (1...𝑁) = ∅))
5352biimpar 477 . . . . . . . . . . . . . . . . . . . . 21 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ≠ ∅)
54 rpssre 13064 . . . . . . . . . . . . . . . . . . . . . . 23 + ⊆ ℝ
5540, 54sstrdi 4021 . . . . . . . . . . . . . . . . . . . . . 22 (:(1...𝑁)⟶ℝ+ → ran ⊆ ℝ)
5655adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ⊆ ℝ)
57 ltso 11370 . . . . . . . . . . . . . . . . . . . . . 22 < Or ℝ
58 fiinfcl 9570 . . . . . . . . . . . . . . . . . . . . . 22 (( < Or ℝ ∧ (ran ∈ Fin ∧ ran ≠ ∅ ∧ ran ⊆ ℝ)) → inf(ran , ℝ, < ) ∈ ran )
5957, 58mpan 689 . . . . . . . . . . . . . . . . . . . . 21 ((ran ∈ Fin ∧ ran ≠ ∅ ∧ ran ⊆ ℝ) → inf(ran , ℝ, < ) ∈ ran )
6047, 53, 56, 59syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → inf(ran , ℝ, < ) ∈ ran )
6141, 60sseldd 4009 . . . . . . . . . . . . . . . . . . 19 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → inf(ran , ℝ, < ) ∈ ℝ+)
6239, 61ifclda 4583 . . . . . . . . . . . . . . . . . 18 (:(1...𝑁)⟶ℝ+ → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+)
6362adantr 480 . . . . . . . . . . . . . . . . 17 ((:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+)
6462adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+)
6564rpxrd 13100 . . . . . . . . . . . . . . . . . . . . . . 23 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ*)
66 ffvelcdm 7115 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ℝ+)
6766rpxrd 13100 . . . . . . . . . . . . . . . . . . . . . . 23 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ℝ*)
68 ne0i 4364 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (1...𝑁) → (1...𝑁) ≠ ∅)
69 ifnefalse 4560 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1...𝑁) ≠ ∅ → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) = inf(ran , ℝ, < ))
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (1...𝑁) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) = inf(ran , ℝ, < ))
7170adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) = inf(ran , ℝ, < ))
7255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → ran ⊆ ℝ)
73 0re 11292 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
74 rpge0 13070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℝ+ → 0 ≤ 𝑦)
7574rgen 3069 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑦 ∈ ℝ+ 0 ≤ 𝑦
76 ssralv 4077 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran ⊆ ℝ+ → (∀𝑦 ∈ ℝ+ 0 ≤ 𝑦 → ∀𝑦 ∈ ran 0 ≤ 𝑦))
7740, 75, 76mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (:(1...𝑁)⟶ℝ+ → ∀𝑦 ∈ ran 0 ≤ 𝑦)
78 breq1 5169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
7978ralbidv 3184 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 0 → (∀𝑦 ∈ ran 𝑥𝑦 ↔ ∀𝑦 ∈ ran 0 ≤ 𝑦))
8079rspcev 3635 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ ∀𝑦 ∈ ran 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦)
8173, 77, 80sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (:(1...𝑁)⟶ℝ+ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦)
8281adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦)
83 fnfvelrn 7114 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( Fn (1...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ran )
8442, 83sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ran )
85 infrelb 12280 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ran ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦 ∧ (𝑛) ∈ ran ) → inf(ran , ℝ, < ) ≤ (𝑛))
8672, 82, 84, 85syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → inf(ran , ℝ, < ) ≤ (𝑛))
8771, 86eqbrtrd 5188 . . . . . . . . . . . . . . . . . . . . . . 23 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛))
8865, 67, 87jca31 514 . . . . . . . . . . . . . . . . . . . . . 22 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛)))
89 ssbl 24454 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐷 ∈ (∞Met‘ℝ) ∧ (𝑃𝑛) ∈ ℝ) ∧ (if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛)) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
90893expb 1120 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐷 ∈ (∞Met‘ℝ) ∧ (𝑃𝑛) ∈ ℝ) ∧ ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛))) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
9125, 90mpanl1 699 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃𝑛) ∈ ℝ ∧ ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛))) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
9291ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 ((((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛)) ∧ (𝑃𝑛) ∈ ℝ) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
9388, 92sylan 579 . . . . . . . . . . . . . . . . . . . . 21 (((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) ∧ (𝑃𝑛) ∈ ℝ) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
94 sstr2 4015 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)) → (((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9593, 94syl 17 . . . . . . . . . . . . . . . . . . . 20 (((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) ∧ (𝑃𝑛) ∈ ℝ) → (((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9695expimpd 453 . . . . . . . . . . . . . . . . . . 19 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛)) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9796ralimdva 3173 . . . . . . . . . . . . . . . . . 18 (:(1...𝑁)⟶ℝ+ → (∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛)) → ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9897imp 406 . . . . . . . . . . . . . . . . 17 ((:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛))
9924fveq2i 6923 . . . . . . . . . . . . . . . . . . . . . 22 (ball‘𝐷) = (ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))
10099oveqi 7461 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) = ((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )))
101100sseq1i 4037 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛) ↔ ((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛))
102101ralbii 3099 . . . . . . . . . . . . . . . . . . 19 (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛) ↔ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛))
103 nfv 1913 . . . . . . . . . . . . . . . . . . 19 𝑑𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)
104102, 103nfxfr 1851 . . . . . . . . . . . . . . . . . 18 𝑑𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)
105 oveq2 7456 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) → ((𝑃𝑛)(ball‘𝐷)𝑑) = ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))))
106105sseq1d 4040 . . . . . . . . . . . . . . . . . . 19 (𝑑 = if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) → (((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) ↔ ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
107106ralbidv 3184 . . . . . . . . . . . . . . . . . 18 (𝑑 = if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) → (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) ↔ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
108104, 107rspce 3624 . . . . . . . . . . . . . . . . 17 ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
10963, 98, 108syl2anc 583 . . . . . . . . . . . . . . . 16 ((:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
110109exlimiv 1929 . . . . . . . . . . . . . . 15 (∃(:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11137, 110syl 17 . . . . . . . . . . . . . 14 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11219, 111sylbir 235 . . . . . . . . . . . . 13 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)) ∧ ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11318, 112sylan2 592 . . . . . . . . . . . 12 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)) ∧ 𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11416, 113sylanb 580 . . . . . . . . . . 11 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ 𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
115 sstr2 4015 . . . . . . . . . . . . 13 (X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
116 ss2ixp 8968 . . . . . . . . . . . . 13 (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) → X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ X𝑛 ∈ (1...𝑁)(𝑔𝑛))
117115, 116syl11 33 . . . . . . . . . . . 12 (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆 → (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) → X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
118117reximdv 3176 . . . . . . . . . . 11 (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆 → (∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
119114, 118syl5com 31 . . . . . . . . . 10 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ 𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆 → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
120119expimpd 453 . . . . . . . . 9 (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) → ((𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ∧ X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
121 eleq2 2833 . . . . . . . . . . 11 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (𝑃𝑧𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)))
122 sseq1 4034 . . . . . . . . . . 11 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (𝑧𝑆X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆))
123121, 122anbi12d 631 . . . . . . . . . 10 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ((𝑃𝑧𝑧𝑆) ↔ (𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ∧ X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆)))
124123imbi1d 341 . . . . . . . . 9 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆) ↔ ((𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ∧ X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)))
125120, 124syl5ibrcom 247 . . . . . . . 8 (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) → (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)))
1261253ad2ant2 1134 . . . . . . 7 ((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) → (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)))
127126imp 406 . . . . . 6 (((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
128127exlimiv 1929 . . . . 5 (∃𝑔((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
12912, 128sylbi 217 . . . 4 (𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
130129rexlimiv 3154 . . 3 (∃𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} (𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
13111, 130syl 17 . 2 ((𝑆 ∈ (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}) ∧ 𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
13210, 131sylanb 580 1 ((𝑆𝑅𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  wss 3976  c0 4352  ifcif 4548  {csn 4648   cuni 4931   class class class wbr 5166   Or wor 5606   × cxp 5698  dom cdm 5700  ran crn 5701  cres 5702  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Xcixp 8955  Fincfn 9003  infcinf 9510  cr 11183  0cc0 11184  1c1 11185  *cxr 11323   < clt 11324  cle 11325  cmin 11520  +crp 13057  (,)cioo 13407  ...cfz 13567  abscabs 15283  topGenctg 17497  tcpt 17498  ∞Metcxmet 21372  ballcbl 21374  MetOpencmopn 21377  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-topgen 17503  df-pt 17504  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974
This theorem is referenced by:  poimirlem29  37609
  Copyright terms: Public domain W3C validator