Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ptrecube Structured version   Visualization version   GIF version

Theorem ptrecube 37607
Description: Any point in an open set of N-space is surrounded by an open cube within that set. (Contributed by Brendan Leahy, 21-Aug-2020.) (Proof shortened by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ptrecube.r 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
ptrecube.d 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
ptrecube ((𝑆𝑅𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
Distinct variable groups:   𝑛,𝑑,𝑁   𝑃,𝑑,𝑛   𝑆,𝑑,𝑛
Allowed substitution hints:   𝐷(𝑛,𝑑)   𝑅(𝑛,𝑑)

Proof of Theorem ptrecube
Dummy variables 𝑔 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptrecube.r . . . 4 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
2 fzfi 14010 . . . . 5 (1...𝑁) ∈ Fin
3 retop 24798 . . . . . 6 (topGen‘ran (,)) ∈ Top
4 fnconstg 6797 . . . . . 6 ((topGen‘ran (,)) ∈ Top → ((1...𝑁) × {(topGen‘ran (,))}) Fn (1...𝑁))
53, 4ax-mp 5 . . . . 5 ((1...𝑁) × {(topGen‘ran (,))}) Fn (1...𝑁)
6 eqid 2735 . . . . . 6 {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} = {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}
76ptval 23594 . . . . 5 (((1...𝑁) ∈ Fin ∧ ((1...𝑁) × {(topGen‘ran (,))}) Fn (1...𝑁)) → (∏t‘((1...𝑁) × {(topGen‘ran (,))})) = (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}))
82, 5, 7mp2an 692 . . . 4 (∏t‘((1...𝑁) × {(topGen‘ran (,))})) = (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))})
91, 8eqtri 2763 . . 3 𝑅 = (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))})
109eleq2i 2831 . 2 (𝑆𝑅𝑆 ∈ (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}))
11 tg2 22988 . . 3 ((𝑆 ∈ (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}) ∧ 𝑃𝑆) → ∃𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} (𝑃𝑧𝑧𝑆))
126elpt 23596 . . . . 5 (𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} ↔ ∃𝑔((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛)))
13 fvex 6920 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) ∈ V
1413fvconst2 7224 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) = (topGen‘ran (,)))
1514eleq2d 2825 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → ((𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↔ (𝑔𝑛) ∈ (topGen‘ran (,))))
1615ralbiia 3089 . . . . . . . . . . . 12 (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)))
17 elixp2 8940 . . . . . . . . . . . . . 14 (𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ↔ (𝑃 ∈ V ∧ 𝑃 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛)))
1817simp3bi 1146 . . . . . . . . . . . . 13 (𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛))
19 r19.26 3109 . . . . . . . . . . . . . 14 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) ↔ (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)) ∧ ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛)))
20 uniretop 24799 . . . . . . . . . . . . . . . . . . . . 21 ℝ = (topGen‘ran (,))
2120eltopss 22929 . . . . . . . . . . . . . . . . . . . 20 (((topGen‘ran (,)) ∈ Top ∧ (𝑔𝑛) ∈ (topGen‘ran (,))) → (𝑔𝑛) ⊆ ℝ)
223, 21mpan 690 . . . . . . . . . . . . . . . . . . 19 ((𝑔𝑛) ∈ (topGen‘ran (,)) → (𝑔𝑛) ⊆ ℝ)
2322sselda 3995 . . . . . . . . . . . . . . . . . 18 (((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → (𝑃𝑛) ∈ ℝ)
24 ptrecube.d . . . . . . . . . . . . . . . . . . . 20 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
2524rexmet 24827 . . . . . . . . . . . . . . . . . . 19 𝐷 ∈ (∞Met‘ℝ)
26 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2724, 26tgioo 24832 . . . . . . . . . . . . . . . . . . . 20 (topGen‘ran (,)) = (MetOpen‘𝐷)
2827mopni2 24522 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (∞Met‘ℝ) ∧ (𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑦 ∈ ℝ+ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛))
2925, 28mp3an1 1447 . . . . . . . . . . . . . . . . . 18 (((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑦 ∈ ℝ+ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛))
30 r19.42v 3189 . . . . . . . . . . . . . . . . . 18 (∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)) ↔ ((𝑃𝑛) ∈ ℝ ∧ ∃𝑦 ∈ ℝ+ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)))
3123, 29, 30sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)))
3231ralimi 3081 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∀𝑛 ∈ (1...𝑁)∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)))
33 oveq2 7439 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑛) → ((𝑃𝑛)(ball‘𝐷)𝑦) = ((𝑃𝑛)(ball‘𝐷)(𝑛)))
3433sseq1d 4027 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑛) → (((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛) ↔ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛)))
3534anbi2d 630 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑛) → (((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)) ↔ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))))
3635ac6sfi 9318 . . . . . . . . . . . . . . . 16 (((1...𝑁) ∈ Fin ∧ ∀𝑛 ∈ (1...𝑁)∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛))) → ∃(:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))))
372, 32, 36sylancr 587 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃(:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))))
38 1rp 13036 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ+
3938a1i 11 . . . . . . . . . . . . . . . . . . 19 ((:(1...𝑁)⟶ℝ+ ∧ (1...𝑁) = ∅) → 1 ∈ ℝ+)
40 frn 6744 . . . . . . . . . . . . . . . . . . . . 21 (:(1...𝑁)⟶ℝ+ → ran ⊆ ℝ+)
4140adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ⊆ ℝ+)
42 ffn 6737 . . . . . . . . . . . . . . . . . . . . . . . 24 (:(1...𝑁)⟶ℝ+ Fn (1...𝑁))
43 fnfi 9216 . . . . . . . . . . . . . . . . . . . . . . . 24 (( Fn (1...𝑁) ∧ (1...𝑁) ∈ Fin) → ∈ Fin)
4442, 2, 43sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 (:(1...𝑁)⟶ℝ+ ∈ Fin)
45 rnfi 9378 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ Fin → ran ∈ Fin)
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (:(1...𝑁)⟶ℝ+ → ran ∈ Fin)
4746adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ∈ Fin)
48 dm0rn0 5938 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom = ∅ ↔ ran = ∅)
49 fdm 6746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (:(1...𝑁)⟶ℝ+ → dom = (1...𝑁))
5049eqeq1d 2737 . . . . . . . . . . . . . . . . . . . . . . . 24 (:(1...𝑁)⟶ℝ+ → (dom = ∅ ↔ (1...𝑁) = ∅))
5148, 50bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . 23 (:(1...𝑁)⟶ℝ+ → (ran = ∅ ↔ (1...𝑁) = ∅))
5251necon3abid 2975 . . . . . . . . . . . . . . . . . . . . . 22 (:(1...𝑁)⟶ℝ+ → (ran ≠ ∅ ↔ ¬ (1...𝑁) = ∅))
5352biimpar 477 . . . . . . . . . . . . . . . . . . . . 21 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ≠ ∅)
54 rpssre 13040 . . . . . . . . . . . . . . . . . . . . . . 23 + ⊆ ℝ
5540, 54sstrdi 4008 . . . . . . . . . . . . . . . . . . . . . 22 (:(1...𝑁)⟶ℝ+ → ran ⊆ ℝ)
5655adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ⊆ ℝ)
57 ltso 11339 . . . . . . . . . . . . . . . . . . . . . 22 < Or ℝ
58 fiinfcl 9539 . . . . . . . . . . . . . . . . . . . . . 22 (( < Or ℝ ∧ (ran ∈ Fin ∧ ran ≠ ∅ ∧ ran ⊆ ℝ)) → inf(ran , ℝ, < ) ∈ ran )
5957, 58mpan 690 . . . . . . . . . . . . . . . . . . . . 21 ((ran ∈ Fin ∧ ran ≠ ∅ ∧ ran ⊆ ℝ) → inf(ran , ℝ, < ) ∈ ran )
6047, 53, 56, 59syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → inf(ran , ℝ, < ) ∈ ran )
6141, 60sseldd 3996 . . . . . . . . . . . . . . . . . . 19 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → inf(ran , ℝ, < ) ∈ ℝ+)
6239, 61ifclda 4566 . . . . . . . . . . . . . . . . . 18 (:(1...𝑁)⟶ℝ+ → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+)
6362adantr 480 . . . . . . . . . . . . . . . . 17 ((:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+)
6462adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+)
6564rpxrd 13076 . . . . . . . . . . . . . . . . . . . . . . 23 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ*)
66 ffvelcdm 7101 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ℝ+)
6766rpxrd 13076 . . . . . . . . . . . . . . . . . . . . . . 23 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ℝ*)
68 ne0i 4347 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (1...𝑁) → (1...𝑁) ≠ ∅)
69 ifnefalse 4543 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1...𝑁) ≠ ∅ → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) = inf(ran , ℝ, < ))
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (1...𝑁) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) = inf(ran , ℝ, < ))
7170adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) = inf(ran , ℝ, < ))
7255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → ran ⊆ ℝ)
73 0re 11261 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
74 rpge0 13046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℝ+ → 0 ≤ 𝑦)
7574rgen 3061 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑦 ∈ ℝ+ 0 ≤ 𝑦
76 ssralv 4064 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran ⊆ ℝ+ → (∀𝑦 ∈ ℝ+ 0 ≤ 𝑦 → ∀𝑦 ∈ ran 0 ≤ 𝑦))
7740, 75, 76mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (:(1...𝑁)⟶ℝ+ → ∀𝑦 ∈ ran 0 ≤ 𝑦)
78 breq1 5151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
7978ralbidv 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 0 → (∀𝑦 ∈ ran 𝑥𝑦 ↔ ∀𝑦 ∈ ran 0 ≤ 𝑦))
8079rspcev 3622 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ ∀𝑦 ∈ ran 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦)
8173, 77, 80sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (:(1...𝑁)⟶ℝ+ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦)
8281adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦)
83 fnfvelrn 7100 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( Fn (1...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ran )
8442, 83sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ran )
85 infrelb 12251 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ran ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦 ∧ (𝑛) ∈ ran ) → inf(ran , ℝ, < ) ≤ (𝑛))
8672, 82, 84, 85syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → inf(ran , ℝ, < ) ≤ (𝑛))
8771, 86eqbrtrd 5170 . . . . . . . . . . . . . . . . . . . . . . 23 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛))
8865, 67, 87jca31 514 . . . . . . . . . . . . . . . . . . . . . 22 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛)))
89 ssbl 24449 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐷 ∈ (∞Met‘ℝ) ∧ (𝑃𝑛) ∈ ℝ) ∧ (if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛)) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
90893expb 1119 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐷 ∈ (∞Met‘ℝ) ∧ (𝑃𝑛) ∈ ℝ) ∧ ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛))) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
9125, 90mpanl1 700 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃𝑛) ∈ ℝ ∧ ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛))) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
9291ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 ((((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛)) ∧ (𝑃𝑛) ∈ ℝ) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
9388, 92sylan 580 . . . . . . . . . . . . . . . . . . . . 21 (((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) ∧ (𝑃𝑛) ∈ ℝ) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
94 sstr2 4002 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)) → (((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9593, 94syl 17 . . . . . . . . . . . . . . . . . . . 20 (((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) ∧ (𝑃𝑛) ∈ ℝ) → (((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9695expimpd 453 . . . . . . . . . . . . . . . . . . 19 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛)) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9796ralimdva 3165 . . . . . . . . . . . . . . . . . 18 (:(1...𝑁)⟶ℝ+ → (∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛)) → ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9897imp 406 . . . . . . . . . . . . . . . . 17 ((:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛))
9924fveq2i 6910 . . . . . . . . . . . . . . . . . . . . . 22 (ball‘𝐷) = (ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))
10099oveqi 7444 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) = ((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )))
101100sseq1i 4024 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛) ↔ ((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛))
102101ralbii 3091 . . . . . . . . . . . . . . . . . . 19 (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛) ↔ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛))
103 nfv 1912 . . . . . . . . . . . . . . . . . . 19 𝑑𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)
104102, 103nfxfr 1850 . . . . . . . . . . . . . . . . . 18 𝑑𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)
105 oveq2 7439 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) → ((𝑃𝑛)(ball‘𝐷)𝑑) = ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))))
106105sseq1d 4027 . . . . . . . . . . . . . . . . . . 19 (𝑑 = if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) → (((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) ↔ ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
107106ralbidv 3176 . . . . . . . . . . . . . . . . . 18 (𝑑 = if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) → (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) ↔ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
108104, 107rspce 3611 . . . . . . . . . . . . . . . . 17 ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
10963, 98, 108syl2anc 584 . . . . . . . . . . . . . . . 16 ((:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
110109exlimiv 1928 . . . . . . . . . . . . . . 15 (∃(:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11137, 110syl 17 . . . . . . . . . . . . . 14 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11219, 111sylbir 235 . . . . . . . . . . . . 13 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)) ∧ ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11318, 112sylan2 593 . . . . . . . . . . . 12 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)) ∧ 𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11416, 113sylanb 581 . . . . . . . . . . 11 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ 𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
115 sstr2 4002 . . . . . . . . . . . . 13 (X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
116 ss2ixp 8949 . . . . . . . . . . . . 13 (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) → X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ X𝑛 ∈ (1...𝑁)(𝑔𝑛))
117115, 116syl11 33 . . . . . . . . . . . 12 (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆 → (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) → X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
118117reximdv 3168 . . . . . . . . . . 11 (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆 → (∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
119114, 118syl5com 31 . . . . . . . . . 10 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ 𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆 → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
120119expimpd 453 . . . . . . . . 9 (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) → ((𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ∧ X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
121 eleq2 2828 . . . . . . . . . . 11 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (𝑃𝑧𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)))
122 sseq1 4021 . . . . . . . . . . 11 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (𝑧𝑆X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆))
123121, 122anbi12d 632 . . . . . . . . . 10 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ((𝑃𝑧𝑧𝑆) ↔ (𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ∧ X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆)))
124123imbi1d 341 . . . . . . . . 9 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆) ↔ ((𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ∧ X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)))
125120, 124syl5ibrcom 247 . . . . . . . 8 (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) → (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)))
1261253ad2ant2 1133 . . . . . . 7 ((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) → (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)))
127126imp 406 . . . . . 6 (((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
128127exlimiv 1928 . . . . 5 (∃𝑔((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
12912, 128sylbi 217 . . . 4 (𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
130129rexlimiv 3146 . . 3 (∃𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} (𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
13111, 130syl 17 . 2 ((𝑆 ∈ (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}) ∧ 𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
13210, 131sylanb 581 1 ((𝑆𝑅𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  wss 3963  c0 4339  ifcif 4531  {csn 4631   cuni 4912   class class class wbr 5148   Or wor 5596   × cxp 5687  dom cdm 5689  ran crn 5690  cres 5691  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Xcixp 8936  Fincfn 8984  infcinf 9479  cr 11152  0cc0 11153  1c1 11154  *cxr 11292   < clt 11293  cle 11294  cmin 11490  +crp 13032  (,)cioo 13384  ...cfz 13544  abscabs 15270  topGenctg 17484  tcpt 17485  ∞Metcxmet 21367  ballcbl 21369  MetOpencmopn 21372  Topctop 22915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-topgen 17490  df-pt 17491  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969
This theorem is referenced by:  poimirlem29  37636
  Copyright terms: Public domain W3C validator