Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ptrecube Structured version   Visualization version   GIF version

Theorem ptrecube 36476
Description: Any point in an open set of N-space is surrounded by an open cube within that set. (Contributed by Brendan Leahy, 21-Aug-2020.) (Proof shortened by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ptrecube.r 𝑅 = (∏tβ€˜((1...𝑁) Γ— {(topGenβ€˜ran (,))}))
ptrecube.d 𝐷 = ((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ))
Assertion
Ref Expression
ptrecube ((𝑆 ∈ 𝑅 ∧ 𝑃 ∈ 𝑆) β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆)
Distinct variable groups:   𝑛,𝑑,𝑁   𝑃,𝑑,𝑛   𝑆,𝑑,𝑛
Allowed substitution hints:   𝐷(𝑛,𝑑)   𝑅(𝑛,𝑑)

Proof of Theorem ptrecube
Dummy variables 𝑔 β„Ž 𝑀 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptrecube.r . . . 4 𝑅 = (∏tβ€˜((1...𝑁) Γ— {(topGenβ€˜ran (,))}))
2 fzfi 13933 . . . . 5 (1...𝑁) ∈ Fin
3 retop 24269 . . . . . 6 (topGenβ€˜ran (,)) ∈ Top
4 fnconstg 6776 . . . . . 6 ((topGenβ€˜ran (,)) ∈ Top β†’ ((1...𝑁) Γ— {(topGenβ€˜ran (,))}) Fn (1...𝑁))
53, 4ax-mp 5 . . . . 5 ((1...𝑁) Γ— {(topGenβ€˜ran (,))}) Fn (1...𝑁)
6 eqid 2732 . . . . . 6 {π‘₯ ∣ βˆƒβ„Ž((β„Ž Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(β„Žβ€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘€ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑀)(β„Žβ€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ π‘₯ = X𝑛 ∈ (1...𝑁)(β„Žβ€˜π‘›))} = {π‘₯ ∣ βˆƒβ„Ž((β„Ž Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(β„Žβ€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘€ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑀)(β„Žβ€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ π‘₯ = X𝑛 ∈ (1...𝑁)(β„Žβ€˜π‘›))}
76ptval 23065 . . . . 5 (((1...𝑁) ∈ Fin ∧ ((1...𝑁) Γ— {(topGenβ€˜ran (,))}) Fn (1...𝑁)) β†’ (∏tβ€˜((1...𝑁) Γ— {(topGenβ€˜ran (,))})) = (topGenβ€˜{π‘₯ ∣ βˆƒβ„Ž((β„Ž Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(β„Žβ€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘€ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑀)(β„Žβ€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ π‘₯ = X𝑛 ∈ (1...𝑁)(β„Žβ€˜π‘›))}))
82, 5, 7mp2an 690 . . . 4 (∏tβ€˜((1...𝑁) Γ— {(topGenβ€˜ran (,))})) = (topGenβ€˜{π‘₯ ∣ βˆƒβ„Ž((β„Ž Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(β„Žβ€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘€ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑀)(β„Žβ€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ π‘₯ = X𝑛 ∈ (1...𝑁)(β„Žβ€˜π‘›))})
91, 8eqtri 2760 . . 3 𝑅 = (topGenβ€˜{π‘₯ ∣ βˆƒβ„Ž((β„Ž Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(β„Žβ€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘€ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑀)(β„Žβ€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ π‘₯ = X𝑛 ∈ (1...𝑁)(β„Žβ€˜π‘›))})
109eleq2i 2825 . 2 (𝑆 ∈ 𝑅 ↔ 𝑆 ∈ (topGenβ€˜{π‘₯ ∣ βˆƒβ„Ž((β„Ž Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(β„Žβ€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘€ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑀)(β„Žβ€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ π‘₯ = X𝑛 ∈ (1...𝑁)(β„Žβ€˜π‘›))}))
11 tg2 22459 . . 3 ((𝑆 ∈ (topGenβ€˜{π‘₯ ∣ βˆƒβ„Ž((β„Ž Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(β„Žβ€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘€ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑀)(β„Žβ€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ π‘₯ = X𝑛 ∈ (1...𝑁)(β„Žβ€˜π‘›))}) ∧ 𝑃 ∈ 𝑆) β†’ βˆƒπ‘§ ∈ {π‘₯ ∣ βˆƒβ„Ž((β„Ž Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(β„Žβ€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘€ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑀)(β„Žβ€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ π‘₯ = X𝑛 ∈ (1...𝑁)(β„Žβ€˜π‘›))} (𝑃 ∈ 𝑧 ∧ 𝑧 βŠ† 𝑆))
126elpt 23067 . . . . 5 (𝑧 ∈ {π‘₯ ∣ βˆƒβ„Ž((β„Ž Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(β„Žβ€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘€ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑀)(β„Žβ€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ π‘₯ = X𝑛 ∈ (1...𝑁)(β„Žβ€˜π‘›))} ↔ βˆƒπ‘”((𝑔 Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(π‘”β€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑧)(π‘”β€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›)))
13 fvex 6901 . . . . . . . . . . . . . . 15 (topGenβ€˜ran (,)) ∈ V
1413fvconst2 7201 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) β†’ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) = (topGenβ€˜ran (,)))
1514eleq2d 2819 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) β†’ ((π‘”β€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ↔ (π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,))))
1615ralbiia 3091 . . . . . . . . . . . 12 (βˆ€π‘› ∈ (1...𝑁)(π‘”β€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ↔ βˆ€π‘› ∈ (1...𝑁)(π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,)))
17 elixp2 8891 . . . . . . . . . . . . . 14 (𝑃 ∈ X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) ↔ (𝑃 ∈ V ∧ 𝑃 Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(π‘ƒβ€˜π‘›) ∈ (π‘”β€˜π‘›)))
1817simp3bi 1147 . . . . . . . . . . . . 13 (𝑃 ∈ X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) β†’ βˆ€π‘› ∈ (1...𝑁)(π‘ƒβ€˜π‘›) ∈ (π‘”β€˜π‘›))
19 r19.26 3111 . . . . . . . . . . . . . 14 (βˆ€π‘› ∈ (1...𝑁)((π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,)) ∧ (π‘ƒβ€˜π‘›) ∈ (π‘”β€˜π‘›)) ↔ (βˆ€π‘› ∈ (1...𝑁)(π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,)) ∧ βˆ€π‘› ∈ (1...𝑁)(π‘ƒβ€˜π‘›) ∈ (π‘”β€˜π‘›)))
20 uniretop 24270 . . . . . . . . . . . . . . . . . . . . 21 ℝ = βˆͺ (topGenβ€˜ran (,))
2120eltopss 22400 . . . . . . . . . . . . . . . . . . . 20 (((topGenβ€˜ran (,)) ∈ Top ∧ (π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,))) β†’ (π‘”β€˜π‘›) βŠ† ℝ)
223, 21mpan 688 . . . . . . . . . . . . . . . . . . 19 ((π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,)) β†’ (π‘”β€˜π‘›) βŠ† ℝ)
2322sselda 3981 . . . . . . . . . . . . . . . . . 18 (((π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,)) ∧ (π‘ƒβ€˜π‘›) ∈ (π‘”β€˜π‘›)) β†’ (π‘ƒβ€˜π‘›) ∈ ℝ)
24 ptrecube.d . . . . . . . . . . . . . . . . . . . 20 𝐷 = ((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ))
2524rexmet 24298 . . . . . . . . . . . . . . . . . . 19 𝐷 ∈ (∞Metβ€˜β„)
26 eqid 2732 . . . . . . . . . . . . . . . . . . . . 21 (MetOpenβ€˜π·) = (MetOpenβ€˜π·)
2724, 26tgioo 24303 . . . . . . . . . . . . . . . . . . . 20 (topGenβ€˜ran (,)) = (MetOpenβ€˜π·)
2827mopni2 23993 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (∞Metβ€˜β„) ∧ (π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,)) ∧ (π‘ƒβ€˜π‘›) ∈ (π‘”β€˜π‘›)) β†’ βˆƒπ‘¦ ∈ ℝ+ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑦) βŠ† (π‘”β€˜π‘›))
2925, 28mp3an1 1448 . . . . . . . . . . . . . . . . . 18 (((π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,)) ∧ (π‘ƒβ€˜π‘›) ∈ (π‘”β€˜π‘›)) β†’ βˆƒπ‘¦ ∈ ℝ+ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑦) βŠ† (π‘”β€˜π‘›))
30 r19.42v 3190 . . . . . . . . . . . . . . . . . 18 (βˆƒπ‘¦ ∈ ℝ+ ((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑦) βŠ† (π‘”β€˜π‘›)) ↔ ((π‘ƒβ€˜π‘›) ∈ ℝ ∧ βˆƒπ‘¦ ∈ ℝ+ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑦) βŠ† (π‘”β€˜π‘›)))
3123, 29, 30sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,)) ∧ (π‘ƒβ€˜π‘›) ∈ (π‘”β€˜π‘›)) β†’ βˆƒπ‘¦ ∈ ℝ+ ((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑦) βŠ† (π‘”β€˜π‘›)))
3231ralimi 3083 . . . . . . . . . . . . . . . 16 (βˆ€π‘› ∈ (1...𝑁)((π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,)) ∧ (π‘ƒβ€˜π‘›) ∈ (π‘”β€˜π‘›)) β†’ βˆ€π‘› ∈ (1...𝑁)βˆƒπ‘¦ ∈ ℝ+ ((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑦) βŠ† (π‘”β€˜π‘›)))
33 oveq2 7413 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (β„Žβ€˜π‘›) β†’ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑦) = ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)))
3433sseq1d 4012 . . . . . . . . . . . . . . . . . 18 (𝑦 = (β„Žβ€˜π‘›) β†’ (((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑦) βŠ† (π‘”β€˜π‘›) ↔ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)) βŠ† (π‘”β€˜π‘›)))
3534anbi2d 629 . . . . . . . . . . . . . . . . 17 (𝑦 = (β„Žβ€˜π‘›) β†’ (((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑦) βŠ† (π‘”β€˜π‘›)) ↔ ((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)) βŠ† (π‘”β€˜π‘›))))
3635ac6sfi 9283 . . . . . . . . . . . . . . . 16 (((1...𝑁) ∈ Fin ∧ βˆ€π‘› ∈ (1...𝑁)βˆƒπ‘¦ ∈ ℝ+ ((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑦) βŠ† (π‘”β€˜π‘›))) β†’ βˆƒβ„Ž(β„Ž:(1...𝑁)βŸΆβ„+ ∧ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)) βŠ† (π‘”β€˜π‘›))))
372, 32, 36sylancr 587 . . . . . . . . . . . . . . 15 (βˆ€π‘› ∈ (1...𝑁)((π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,)) ∧ (π‘ƒβ€˜π‘›) ∈ (π‘”β€˜π‘›)) β†’ βˆƒβ„Ž(β„Ž:(1...𝑁)βŸΆβ„+ ∧ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)) βŠ† (π‘”β€˜π‘›))))
38 1rp 12974 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ+
3938a1i 11 . . . . . . . . . . . . . . . . . . 19 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ (1...𝑁) = βˆ…) β†’ 1 ∈ ℝ+)
40 frn 6721 . . . . . . . . . . . . . . . . . . . . 21 (β„Ž:(1...𝑁)βŸΆβ„+ β†’ ran β„Ž βŠ† ℝ+)
4140adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ Β¬ (1...𝑁) = βˆ…) β†’ ran β„Ž βŠ† ℝ+)
42 ffn 6714 . . . . . . . . . . . . . . . . . . . . . . . 24 (β„Ž:(1...𝑁)βŸΆβ„+ β†’ β„Ž Fn (1...𝑁))
43 fnfi 9177 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β„Ž Fn (1...𝑁) ∧ (1...𝑁) ∈ Fin) β†’ β„Ž ∈ Fin)
4442, 2, 43sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 (β„Ž:(1...𝑁)βŸΆβ„+ β†’ β„Ž ∈ Fin)
45 rnfi 9331 . . . . . . . . . . . . . . . . . . . . . . 23 (β„Ž ∈ Fin β†’ ran β„Ž ∈ Fin)
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (β„Ž:(1...𝑁)βŸΆβ„+ β†’ ran β„Ž ∈ Fin)
4746adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ Β¬ (1...𝑁) = βˆ…) β†’ ran β„Ž ∈ Fin)
48 dm0rn0 5922 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom β„Ž = βˆ… ↔ ran β„Ž = βˆ…)
49 fdm 6723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (β„Ž:(1...𝑁)βŸΆβ„+ β†’ dom β„Ž = (1...𝑁))
5049eqeq1d 2734 . . . . . . . . . . . . . . . . . . . . . . . 24 (β„Ž:(1...𝑁)βŸΆβ„+ β†’ (dom β„Ž = βˆ… ↔ (1...𝑁) = βˆ…))
5148, 50bitr3id 284 . . . . . . . . . . . . . . . . . . . . . . 23 (β„Ž:(1...𝑁)βŸΆβ„+ β†’ (ran β„Ž = βˆ… ↔ (1...𝑁) = βˆ…))
5251necon3abid 2977 . . . . . . . . . . . . . . . . . . . . . 22 (β„Ž:(1...𝑁)βŸΆβ„+ β†’ (ran β„Ž β‰  βˆ… ↔ Β¬ (1...𝑁) = βˆ…))
5352biimpar 478 . . . . . . . . . . . . . . . . . . . . 21 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ Β¬ (1...𝑁) = βˆ…) β†’ ran β„Ž β‰  βˆ…)
54 rpssre 12977 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ+ βŠ† ℝ
5540, 54sstrdi 3993 . . . . . . . . . . . . . . . . . . . . . 22 (β„Ž:(1...𝑁)βŸΆβ„+ β†’ ran β„Ž βŠ† ℝ)
5655adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ Β¬ (1...𝑁) = βˆ…) β†’ ran β„Ž βŠ† ℝ)
57 ltso 11290 . . . . . . . . . . . . . . . . . . . . . 22 < Or ℝ
58 fiinfcl 9492 . . . . . . . . . . . . . . . . . . . . . 22 (( < Or ℝ ∧ (ran β„Ž ∈ Fin ∧ ran β„Ž β‰  βˆ… ∧ ran β„Ž βŠ† ℝ)) β†’ inf(ran β„Ž, ℝ, < ) ∈ ran β„Ž)
5957, 58mpan 688 . . . . . . . . . . . . . . . . . . . . 21 ((ran β„Ž ∈ Fin ∧ ran β„Ž β‰  βˆ… ∧ ran β„Ž βŠ† ℝ) β†’ inf(ran β„Ž, ℝ, < ) ∈ ran β„Ž)
6047, 53, 56, 59syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ Β¬ (1...𝑁) = βˆ…) β†’ inf(ran β„Ž, ℝ, < ) ∈ ran β„Ž)
6141, 60sseldd 3982 . . . . . . . . . . . . . . . . . . 19 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ Β¬ (1...𝑁) = βˆ…) β†’ inf(ran β„Ž, ℝ, < ) ∈ ℝ+)
6239, 61ifclda 4562 . . . . . . . . . . . . . . . . . 18 (β„Ž:(1...𝑁)βŸΆβ„+ β†’ if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ∈ ℝ+)
6362adantr 481 . . . . . . . . . . . . . . . . 17 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)) βŠ† (π‘”β€˜π‘›))) β†’ if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ∈ ℝ+)
6462adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) β†’ if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ∈ ℝ+)
6564rpxrd 13013 . . . . . . . . . . . . . . . . . . . . . . 23 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) β†’ if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ∈ ℝ*)
66 ffvelcdm 7080 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) β†’ (β„Žβ€˜π‘›) ∈ ℝ+)
6766rpxrd 13013 . . . . . . . . . . . . . . . . . . . . . . 23 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) β†’ (β„Žβ€˜π‘›) ∈ ℝ*)
68 ne0i 4333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (1...𝑁) β†’ (1...𝑁) β‰  βˆ…)
69 ifnefalse 4539 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1...𝑁) β‰  βˆ… β†’ if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) = inf(ran β„Ž, ℝ, < ))
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (1...𝑁) β†’ if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) = inf(ran β„Ž, ℝ, < ))
7170adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) β†’ if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) = inf(ran β„Ž, ℝ, < ))
7255adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) β†’ ran β„Ž βŠ† ℝ)
73 0re 11212 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
74 rpge0 12983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℝ+ β†’ 0 ≀ 𝑦)
7574rgen 3063 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 βˆ€π‘¦ ∈ ℝ+ 0 ≀ 𝑦
76 ssralv 4049 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran β„Ž βŠ† ℝ+ β†’ (βˆ€π‘¦ ∈ ℝ+ 0 ≀ 𝑦 β†’ βˆ€π‘¦ ∈ ran β„Ž0 ≀ 𝑦))
7740, 75, 76mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (β„Ž:(1...𝑁)βŸΆβ„+ β†’ βˆ€π‘¦ ∈ ran β„Ž0 ≀ 𝑦)
78 breq1 5150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (π‘₯ = 0 β†’ (π‘₯ ≀ 𝑦 ↔ 0 ≀ 𝑦))
7978ralbidv 3177 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (π‘₯ = 0 β†’ (βˆ€π‘¦ ∈ ran β„Ž π‘₯ ≀ 𝑦 ↔ βˆ€π‘¦ ∈ ran β„Ž0 ≀ 𝑦))
8079rspcev 3612 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ βˆ€π‘¦ ∈ ran β„Ž0 ≀ 𝑦) β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ ran β„Ž π‘₯ ≀ 𝑦)
8173, 77, 80sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (β„Ž:(1...𝑁)βŸΆβ„+ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ ran β„Ž π‘₯ ≀ 𝑦)
8281adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ ran β„Ž π‘₯ ≀ 𝑦)
83 fnfvelrn 7079 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((β„Ž Fn (1...𝑁) ∧ 𝑛 ∈ (1...𝑁)) β†’ (β„Žβ€˜π‘›) ∈ ran β„Ž)
8442, 83sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) β†’ (β„Žβ€˜π‘›) ∈ ran β„Ž)
85 infrelb 12195 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ran β„Ž βŠ† ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ ran β„Ž π‘₯ ≀ 𝑦 ∧ (β„Žβ€˜π‘›) ∈ ran β„Ž) β†’ inf(ran β„Ž, ℝ, < ) ≀ (β„Žβ€˜π‘›))
8672, 82, 84, 85syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) β†’ inf(ran β„Ž, ℝ, < ) ≀ (β„Žβ€˜π‘›))
8771, 86eqbrtrd 5169 . . . . . . . . . . . . . . . . . . . . . . 23 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) β†’ if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ≀ (β„Žβ€˜π‘›))
8865, 67, 87jca31 515 . . . . . . . . . . . . . . . . . . . . . 22 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) β†’ ((if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ∈ ℝ* ∧ (β„Žβ€˜π‘›) ∈ ℝ*) ∧ if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ≀ (β„Žβ€˜π‘›)))
89 ssbl 23920 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐷 ∈ (∞Metβ€˜β„) ∧ (π‘ƒβ€˜π‘›) ∈ ℝ) ∧ (if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ∈ ℝ* ∧ (β„Žβ€˜π‘›) ∈ ℝ*) ∧ if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ≀ (β„Žβ€˜π‘›)) β†’ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)))
90893expb 1120 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐷 ∈ (∞Metβ€˜β„) ∧ (π‘ƒβ€˜π‘›) ∈ ℝ) ∧ ((if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ∈ ℝ* ∧ (β„Žβ€˜π‘›) ∈ ℝ*) ∧ if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ≀ (β„Žβ€˜π‘›))) β†’ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)))
9125, 90mpanl1 698 . . . . . . . . . . . . . . . . . . . . . . 23 (((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ∈ ℝ* ∧ (β„Žβ€˜π‘›) ∈ ℝ*) ∧ if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ≀ (β„Žβ€˜π‘›))) β†’ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)))
9291ancoms 459 . . . . . . . . . . . . . . . . . . . . . 22 ((((if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ∈ ℝ* ∧ (β„Žβ€˜π‘›) ∈ ℝ*) ∧ if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ≀ (β„Žβ€˜π‘›)) ∧ (π‘ƒβ€˜π‘›) ∈ ℝ) β†’ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)))
9388, 92sylan 580 . . . . . . . . . . . . . . . . . . . . 21 (((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) ∧ (π‘ƒβ€˜π‘›) ∈ ℝ) β†’ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)))
94 sstr2 3988 . . . . . . . . . . . . . . . . . . . . 21 (((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)) β†’ (((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)) βŠ† (π‘”β€˜π‘›) β†’ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›)))
9593, 94syl 17 . . . . . . . . . . . . . . . . . . . 20 (((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) ∧ (π‘ƒβ€˜π‘›) ∈ ℝ) β†’ (((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)) βŠ† (π‘”β€˜π‘›) β†’ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›)))
9695expimpd 454 . . . . . . . . . . . . . . . . . . 19 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ 𝑛 ∈ (1...𝑁)) β†’ (((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)) βŠ† (π‘”β€˜π‘›)) β†’ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›)))
9796ralimdva 3167 . . . . . . . . . . . . . . . . . 18 (β„Ž:(1...𝑁)βŸΆβ„+ β†’ (βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)) βŠ† (π‘”β€˜π‘›)) β†’ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›)))
9897imp 407 . . . . . . . . . . . . . . . . 17 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)) βŠ† (π‘”β€˜π‘›))) β†’ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›))
9924fveq2i 6891 . . . . . . . . . . . . . . . . . . . . . 22 (ballβ€˜π·) = (ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))
10099oveqi 7418 . . . . . . . . . . . . . . . . . . . . 21 ((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) = ((π‘ƒβ€˜π‘›)(ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )))
101100sseq1i 4009 . . . . . . . . . . . . . . . . . . . 20 (((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›) ↔ ((π‘ƒβ€˜π‘›)(ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›))
102101ralbii 3093 . . . . . . . . . . . . . . . . . . 19 (βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›) ↔ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›))
103 nfv 1917 . . . . . . . . . . . . . . . . . . 19 β„²π‘‘βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›)
104102, 103nfxfr 1855 . . . . . . . . . . . . . . . . . 18 β„²π‘‘βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›)
105 oveq2 7413 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) β†’ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) = ((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))))
106105sseq1d 4012 . . . . . . . . . . . . . . . . . . 19 (𝑑 = if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) β†’ (((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† (π‘”β€˜π‘›) ↔ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›)))
107106ralbidv 3177 . . . . . . . . . . . . . . . . . 18 (𝑑 = if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) β†’ (βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† (π‘”β€˜π‘›) ↔ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›)))
108104, 107rspce 3601 . . . . . . . . . . . . . . . . 17 ((if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < )) ∈ ℝ+ ∧ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)if((1...𝑁) = βˆ…, 1, inf(ran β„Ž, ℝ, < ))) βŠ† (π‘”β€˜π‘›)) β†’ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† (π‘”β€˜π‘›))
10963, 98, 108syl2anc 584 . . . . . . . . . . . . . . . 16 ((β„Ž:(1...𝑁)βŸΆβ„+ ∧ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)) βŠ† (π‘”β€˜π‘›))) β†’ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† (π‘”β€˜π‘›))
110109exlimiv 1933 . . . . . . . . . . . . . . 15 (βˆƒβ„Ž(β„Ž:(1...𝑁)βŸΆβ„+ ∧ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›) ∈ ℝ ∧ ((π‘ƒβ€˜π‘›)(ballβ€˜π·)(β„Žβ€˜π‘›)) βŠ† (π‘”β€˜π‘›))) β†’ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† (π‘”β€˜π‘›))
11137, 110syl 17 . . . . . . . . . . . . . 14 (βˆ€π‘› ∈ (1...𝑁)((π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,)) ∧ (π‘ƒβ€˜π‘›) ∈ (π‘”β€˜π‘›)) β†’ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† (π‘”β€˜π‘›))
11219, 111sylbir 234 . . . . . . . . . . . . 13 ((βˆ€π‘› ∈ (1...𝑁)(π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,)) ∧ βˆ€π‘› ∈ (1...𝑁)(π‘ƒβ€˜π‘›) ∈ (π‘”β€˜π‘›)) β†’ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† (π‘”β€˜π‘›))
11318, 112sylan2 593 . . . . . . . . . . . 12 ((βˆ€π‘› ∈ (1...𝑁)(π‘”β€˜π‘›) ∈ (topGenβ€˜ran (,)) ∧ 𝑃 ∈ X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›)) β†’ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† (π‘”β€˜π‘›))
11416, 113sylanb 581 . . . . . . . . . . 11 ((βˆ€π‘› ∈ (1...𝑁)(π‘”β€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ 𝑃 ∈ X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›)) β†’ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† (π‘”β€˜π‘›))
115 sstr2 3988 . . . . . . . . . . . . 13 (X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) β†’ (X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) βŠ† 𝑆 β†’ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆))
116 ss2ixp 8900 . . . . . . . . . . . . 13 (βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† (π‘”β€˜π‘›) β†’ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›))
117115, 116syl11 33 . . . . . . . . . . . 12 (X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) βŠ† 𝑆 β†’ (βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† (π‘”β€˜π‘›) β†’ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆))
118117reximdv 3170 . . . . . . . . . . 11 (X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) βŠ† 𝑆 β†’ (βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘› ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† (π‘”β€˜π‘›) β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆))
119114, 118syl5com 31 . . . . . . . . . 10 ((βˆ€π‘› ∈ (1...𝑁)(π‘”β€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ 𝑃 ∈ X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›)) β†’ (X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) βŠ† 𝑆 β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆))
120119expimpd 454 . . . . . . . . 9 (βˆ€π‘› ∈ (1...𝑁)(π‘”β€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) β†’ ((𝑃 ∈ X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) ∧ X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) βŠ† 𝑆) β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆))
121 eleq2 2822 . . . . . . . . . . 11 (𝑧 = X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) β†’ (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›)))
122 sseq1 4006 . . . . . . . . . . 11 (𝑧 = X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) β†’ (𝑧 βŠ† 𝑆 ↔ X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) βŠ† 𝑆))
123121, 122anbi12d 631 . . . . . . . . . 10 (𝑧 = X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) β†’ ((𝑃 ∈ 𝑧 ∧ 𝑧 βŠ† 𝑆) ↔ (𝑃 ∈ X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) ∧ X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) βŠ† 𝑆)))
124123imbi1d 341 . . . . . . . . 9 (𝑧 = X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) β†’ (((𝑃 ∈ 𝑧 ∧ 𝑧 βŠ† 𝑆) β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆) ↔ ((𝑃 ∈ X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) ∧ X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) βŠ† 𝑆) β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆)))
125120, 124syl5ibrcom 246 . . . . . . . 8 (βˆ€π‘› ∈ (1...𝑁)(π‘”β€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) β†’ (𝑧 = X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) β†’ ((𝑃 ∈ 𝑧 ∧ 𝑧 βŠ† 𝑆) β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆)))
1261253ad2ant2 1134 . . . . . . 7 ((𝑔 Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(π‘”β€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑧)(π‘”β€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) β†’ (𝑧 = X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›) β†’ ((𝑃 ∈ 𝑧 ∧ 𝑧 βŠ† 𝑆) β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆)))
127126imp 407 . . . . . 6 (((𝑔 Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(π‘”β€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑧)(π‘”β€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›)) β†’ ((𝑃 ∈ 𝑧 ∧ 𝑧 βŠ† 𝑆) β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆))
128127exlimiv 1933 . . . . 5 (βˆƒπ‘”((𝑔 Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(π‘”β€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑧)(π‘”β€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(π‘”β€˜π‘›)) β†’ ((𝑃 ∈ 𝑧 ∧ 𝑧 βŠ† 𝑆) β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆))
12912, 128sylbi 216 . . . 4 (𝑧 ∈ {π‘₯ ∣ βˆƒβ„Ž((β„Ž Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(β„Žβ€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘€ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑀)(β„Žβ€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ π‘₯ = X𝑛 ∈ (1...𝑁)(β„Žβ€˜π‘›))} β†’ ((𝑃 ∈ 𝑧 ∧ 𝑧 βŠ† 𝑆) β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆))
130129rexlimiv 3148 . . 3 (βˆƒπ‘§ ∈ {π‘₯ ∣ βˆƒβ„Ž((β„Ž Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(β„Žβ€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘€ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑀)(β„Žβ€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ π‘₯ = X𝑛 ∈ (1...𝑁)(β„Žβ€˜π‘›))} (𝑃 ∈ 𝑧 ∧ 𝑧 βŠ† 𝑆) β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆)
13111, 130syl 17 . 2 ((𝑆 ∈ (topGenβ€˜{π‘₯ ∣ βˆƒβ„Ž((β„Ž Fn (1...𝑁) ∧ βˆ€π‘› ∈ (1...𝑁)(β„Žβ€˜π‘›) ∈ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›) ∧ βˆƒπ‘€ ∈ Fin βˆ€π‘› ∈ ((1...𝑁) βˆ– 𝑀)(β„Žβ€˜π‘›) = βˆͺ (((1...𝑁) Γ— {(topGenβ€˜ran (,))})β€˜π‘›)) ∧ π‘₯ = X𝑛 ∈ (1...𝑁)(β„Žβ€˜π‘›))}) ∧ 𝑃 ∈ 𝑆) β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆)
13210, 131sylanb 581 1 ((𝑆 ∈ 𝑅 ∧ 𝑃 ∈ 𝑆) β†’ βˆƒπ‘‘ ∈ ℝ+ X𝑛 ∈ (1...𝑁)((π‘ƒβ€˜π‘›)(ballβ€˜π·)𝑑) βŠ† 𝑆)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  {cab 2709   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βˆ– cdif 3944   βŠ† wss 3947  βˆ…c0 4321  ifcif 4527  {csn 4627  βˆͺ cuni 4907   class class class wbr 5147   Or wor 5586   Γ— cxp 5673  dom cdm 5675  ran crn 5676   β†Ύ cres 5677   ∘ ccom 5679   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  Xcixp 8887  Fincfn 8935  infcinf 9432  β„cr 11105  0cc0 11106  1c1 11107  β„*cxr 11243   < clt 11244   ≀ cle 11245   βˆ’ cmin 11440  β„+crp 12970  (,)cioo 13320  ...cfz 13480  abscabs 15177  topGenctg 17379  βˆtcpt 17380  βˆžMetcxmet 20921  ballcbl 20923  MetOpencmopn 20926  Topctop 22386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-fz 13481  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-topgen 17385  df-pt 17386  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-top 22387  df-topon 22404  df-bases 22440
This theorem is referenced by:  poimirlem29  36505
  Copyright terms: Public domain W3C validator