![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chpeq0 | Structured version Visualization version GIF version |
Description: The second Chebyshev function is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 9-Apr-2016.) |
Ref | Expression |
---|---|
chpeq0 | ⊢ (𝐴 ∈ ℝ → ((ψ‘𝐴) = 0 ↔ 𝐴 < 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12338 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | lenlt 11342 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2)) | |
3 | 1, 2 | mpan 688 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2)) |
4 | chprpcl 27236 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (ψ‘𝐴) ∈ ℝ+) | |
5 | 4 | rpne0d 13075 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (ψ‘𝐴) ≠ 0) |
6 | 5 | ex 411 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2 ≤ 𝐴 → (ψ‘𝐴) ≠ 0)) |
7 | 3, 6 | sylbird 259 | . . 3 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 < 2 → (ψ‘𝐴) ≠ 0)) |
8 | 7 | necon4bd 2950 | . 2 ⊢ (𝐴 ∈ ℝ → ((ψ‘𝐴) = 0 → 𝐴 < 2)) |
9 | reflcl 13816 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
10 | 9 | adantr 479 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℝ) |
11 | 1red 11265 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → 1 ∈ ℝ) | |
12 | 2z 12646 | . . . . . . . . . 10 ⊢ 2 ∈ ℤ | |
13 | fllt 13826 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (𝐴 < 2 ↔ (⌊‘𝐴) < 2)) | |
14 | 12, 13 | mpan2 689 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 < 2 ↔ (⌊‘𝐴) < 2)) |
15 | 14 | biimpa 475 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < 2) |
16 | df-2 12327 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
17 | 15, 16 | breqtrdi 5194 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < (1 + 1)) |
18 | flcl 13815 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
19 | 18 | adantr 479 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℤ) |
20 | 1z 12644 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
21 | zleltp1 12665 | . . . . . . . 8 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1))) | |
22 | 19, 20, 21 | sylancl 584 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1))) |
23 | 17, 22 | mpbird 256 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ≤ 1) |
24 | chpwordi 27185 | . . . . . 6 ⊢ (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝐴) ≤ 1) → (ψ‘(⌊‘𝐴)) ≤ (ψ‘1)) | |
25 | 10, 11, 23, 24 | syl3anc 1368 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘(⌊‘𝐴)) ≤ (ψ‘1)) |
26 | chpfl 27178 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (ψ‘(⌊‘𝐴)) = (ψ‘𝐴)) | |
27 | 26 | adantr 479 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘(⌊‘𝐴)) = (ψ‘𝐴)) |
28 | chp1 27195 | . . . . . 6 ⊢ (ψ‘1) = 0 | |
29 | 28 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘1) = 0) |
30 | 25, 27, 29 | 3brtr3d 5184 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘𝐴) ≤ 0) |
31 | chpge0 27154 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ≤ (ψ‘𝐴)) | |
32 | 31 | adantr 479 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → 0 ≤ (ψ‘𝐴)) |
33 | chpcl 27152 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ) | |
34 | 33 | adantr 479 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘𝐴) ∈ ℝ) |
35 | 0re 11266 | . . . . 5 ⊢ 0 ∈ ℝ | |
36 | letri3 11349 | . . . . 5 ⊢ (((ψ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ψ‘𝐴) = 0 ↔ ((ψ‘𝐴) ≤ 0 ∧ 0 ≤ (ψ‘𝐴)))) | |
37 | 34, 35, 36 | sylancl 584 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((ψ‘𝐴) = 0 ↔ ((ψ‘𝐴) ≤ 0 ∧ 0 ≤ (ψ‘𝐴)))) |
38 | 30, 32, 37 | mpbir2and 711 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘𝐴) = 0) |
39 | 38 | ex 411 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 2 → (ψ‘𝐴) = 0)) |
40 | 8, 39 | impbid 211 | 1 ⊢ (𝐴 ∈ ℝ → ((ψ‘𝐴) = 0 ↔ 𝐴 < 2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 ℝcr 11157 0cc0 11158 1c1 11159 + caddc 11161 < clt 11298 ≤ cle 11299 2c2 12319 ℤcz 12610 ⌊cfl 13810 ψcchp 27121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-oadd 8500 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-fi 9454 df-sup 9485 df-inf 9486 df-oi 9553 df-dju 9944 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ioo 13382 df-ioc 13383 df-ico 13384 df-icc 13385 df-fz 13539 df-fzo 13682 df-fl 13812 df-mod 13890 df-seq 14022 df-exp 14082 df-fac 14291 df-bc 14320 df-hash 14348 df-shft 15072 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-limsup 15473 df-clim 15490 df-rlim 15491 df-sum 15691 df-ef 16069 df-sin 16071 df-cos 16072 df-pi 16074 df-dvds 16257 df-gcd 16495 df-prm 16673 df-pc 16839 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-hom 17290 df-cco 17291 df-rest 17437 df-topn 17438 df-0g 17456 df-gsum 17457 df-topgen 17458 df-pt 17459 df-prds 17462 df-xrs 17517 df-qtop 17522 df-imas 17523 df-xps 17525 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-submnd 18774 df-mulg 19062 df-cntz 19311 df-cmn 19780 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-fbas 21340 df-fg 21341 df-cnfld 21344 df-top 22887 df-topon 22904 df-topsp 22926 df-bases 22940 df-cld 23014 df-ntr 23015 df-cls 23016 df-nei 23093 df-lp 23131 df-perf 23132 df-cn 23222 df-cnp 23223 df-haus 23310 df-tx 23557 df-hmeo 23750 df-fil 23841 df-fm 23933 df-flim 23934 df-flf 23935 df-xms 24317 df-ms 24318 df-tms 24319 df-cncf 24889 df-limc 25886 df-dv 25887 df-log 26583 df-cht 27125 df-vma 27126 df-chp 27127 |
This theorem is referenced by: chteq0 27238 chpo1ubb 27510 selberg2lem 27579 pntrmax 27593 pntrsumo1 27594 pntrlog2bndlem2 27607 pntrlog2bndlem4 27609 |
Copyright terms: Public domain | W3C validator |