![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abvn0b | Structured version Visualization version GIF version |
Description: Another characterization of domains, hinted at in abvtriv 20252: a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
abvn0b.b | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
abvn0b | ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnnzr 20717 | . . 3 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
2 | abvn0b.b | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
3 | eqid 2737 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | eqid 2737 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2737 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) = (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) | |
6 | eqid 2737 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
7 | domnring 20718 | . . . . 5 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | |
8 | 3, 6, 4 | domnmuln0 20720 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅)) |
9 | 2, 3, 4, 5, 6, 7, 8 | abvtrivd 20251 | . . . 4 ⊢ (𝑅 ∈ Domn → (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) ∈ 𝐴) |
10 | 9 | ne0d 4293 | . . 3 ⊢ (𝑅 ∈ Domn → 𝐴 ≠ ∅) |
11 | 1, 10 | jca 512 | . 2 ⊢ (𝑅 ∈ Domn → (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
12 | n0 4304 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
13 | neanior 3035 | . . . . . . . . 9 ⊢ ((𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)) ↔ ¬ (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))) | |
14 | an4 654 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) ↔ ((𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)))) | |
15 | 2, 3, 4, 6 | abvdom 20249 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅)) |
16 | 15 | 3expib 1122 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝐴 → (((𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
17 | 14, 16 | biimtrid 241 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 → (((𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
18 | 17 | expdimp 453 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
19 | 13, 18 | biimtrrid 242 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (¬ (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
20 | 19 | necon4bd 2961 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
21 | 20 | ralrimivva 3195 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
22 | 21 | exlimiv 1933 | . . . . 5 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
23 | 12, 22 | sylbi 216 | . . . 4 ⊢ (𝐴 ≠ ∅ → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
24 | 23 | anim2i 617 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅) → (𝑅 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))))) |
25 | 3, 6, 4 | isdomn 20716 | . . 3 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))))) |
26 | 24, 25 | sylibr 233 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅) → 𝑅 ∈ Domn) |
27 | 11, 26 | impbii 208 | 1 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2941 ∀wral 3062 ∅c0 4280 ifcif 4484 ↦ cmpt 5186 ‘cfv 6493 (class class class)co 7351 0cc0 11009 1c1 11010 Basecbs 17042 .rcmulr 17093 0gc0g 17280 AbsValcabv 20227 NzRingcnzr 20679 Domncdomn 20702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-om 7795 df-2nd 7914 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-er 8606 df-map 8725 df-en 8842 df-dom 8843 df-sdom 8844 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-nn 12112 df-2 12174 df-ico 13224 df-sets 16995 df-slot 17013 df-ndx 17025 df-base 17043 df-plusg 17105 df-0g 17282 df-mgm 18456 df-sgrp 18505 df-mnd 18516 df-grp 18710 df-minusg 18711 df-mgp 19855 df-ring 19919 df-abv 20228 df-nzr 20680 df-domn 20706 |
This theorem is referenced by: nrgdomn 23986 |
Copyright terms: Public domain | W3C validator |