MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvn0b Structured version   Visualization version   GIF version

Theorem abvn0b 20745
Description: Another characterization of domains, hinted at in abvtrivg 20742: a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015.)
Hypothesis
Ref Expression
abvn0b.b 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
abvn0b (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅))

Proof of Theorem abvn0b
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnnzr 20615 . . 3 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
2 abvn0b.b . . . . 5 𝐴 = (AbsVal‘𝑅)
3 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2729 . . . . 5 (0g𝑅) = (0g𝑅)
5 eqid 2729 . . . . 5 (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g𝑅), 0, 1)) = (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g𝑅), 0, 1))
62, 3, 4, 5abvtrivg 20742 . . . 4 (𝑅 ∈ Domn → (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g𝑅), 0, 1)) ∈ 𝐴)
76ne0d 4305 . . 3 (𝑅 ∈ Domn → 𝐴 ≠ ∅)
81, 7jca 511 . 2 (𝑅 ∈ Domn → (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅))
9 n0 4316 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
10 neanior 3018 . . . . . . . . 9 ((𝑦 ≠ (0g𝑅) ∧ 𝑧 ≠ (0g𝑅)) ↔ ¬ (𝑦 = (0g𝑅) ∨ 𝑧 = (0g𝑅)))
11 an4 656 . . . . . . . . . . 11 (((𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦 ≠ (0g𝑅) ∧ 𝑧 ≠ (0g𝑅))) ↔ ((𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g𝑅))))
12 eqid 2729 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
132, 3, 4, 12abvdom 20739 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g𝑅))) → (𝑦(.r𝑅)𝑧) ≠ (0g𝑅))
14133expib 1122 . . . . . . . . . . 11 (𝑥𝐴 → (((𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g𝑅))) → (𝑦(.r𝑅)𝑧) ≠ (0g𝑅)))
1511, 14biimtrid 242 . . . . . . . . . 10 (𝑥𝐴 → (((𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦 ≠ (0g𝑅) ∧ 𝑧 ≠ (0g𝑅))) → (𝑦(.r𝑅)𝑧) ≠ (0g𝑅)))
1615expdimp 452 . . . . . . . . 9 ((𝑥𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦 ≠ (0g𝑅) ∧ 𝑧 ≠ (0g𝑅)) → (𝑦(.r𝑅)𝑧) ≠ (0g𝑅)))
1710, 16biimtrrid 243 . . . . . . . 8 ((𝑥𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (¬ (𝑦 = (0g𝑅) ∨ 𝑧 = (0g𝑅)) → (𝑦(.r𝑅)𝑧) ≠ (0g𝑅)))
1817necon4bd 2945 . . . . . . 7 ((𝑥𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(.r𝑅)𝑧) = (0g𝑅) → (𝑦 = (0g𝑅) ∨ 𝑧 = (0g𝑅))))
1918ralrimivva 3180 . . . . . 6 (𝑥𝐴 → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑧) = (0g𝑅) → (𝑦 = (0g𝑅) ∨ 𝑧 = (0g𝑅))))
2019exlimiv 1930 . . . . 5 (∃𝑥 𝑥𝐴 → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑧) = (0g𝑅) → (𝑦 = (0g𝑅) ∨ 𝑧 = (0g𝑅))))
219, 20sylbi 217 . . . 4 (𝐴 ≠ ∅ → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑧) = (0g𝑅) → (𝑦 = (0g𝑅) ∨ 𝑧 = (0g𝑅))))
2221anim2i 617 . . 3 ((𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅) → (𝑅 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑧) = (0g𝑅) → (𝑦 = (0g𝑅) ∨ 𝑧 = (0g𝑅)))))
233, 12, 4isdomn 20614 . . 3 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r𝑅)𝑧) = (0g𝑅) → (𝑦 = (0g𝑅) ∨ 𝑧 = (0g𝑅)))))
2422, 23sylibr 234 . 2 ((𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅) → 𝑅 ∈ Domn)
258, 24impbii 209 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  c0 4296  ifcif 4488  cmpt 5188  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  Basecbs 17179  .rcmulr 17221  0gc0g 17402  NzRingcnzr 20421  Domncdomn 20601  AbsValcabv 20717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-ico 13312  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-nzr 20422  df-domn 20604  df-abv 20718
This theorem is referenced by:  nrgdomn  24559
  Copyright terms: Public domain W3C validator