Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abvn0b | Structured version Visualization version GIF version |
Description: Another characterization of domains, hinted at in abvtriv 20016: a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
abvn0b.b | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
abvn0b | ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnnzr 20479 | . . 3 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
2 | abvn0b.b | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
3 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | eqid 2738 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) = (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) | |
6 | eqid 2738 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
7 | domnring 20480 | . . . . 5 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | |
8 | 3, 6, 4 | domnmuln0 20482 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅)) |
9 | 2, 3, 4, 5, 6, 7, 8 | abvtrivd 20015 | . . . 4 ⊢ (𝑅 ∈ Domn → (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) ∈ 𝐴) |
10 | 9 | ne0d 4266 | . . 3 ⊢ (𝑅 ∈ Domn → 𝐴 ≠ ∅) |
11 | 1, 10 | jca 511 | . 2 ⊢ (𝑅 ∈ Domn → (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
12 | n0 4277 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
13 | neanior 3036 | . . . . . . . . 9 ⊢ ((𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)) ↔ ¬ (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))) | |
14 | an4 652 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) ↔ ((𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)))) | |
15 | 2, 3, 4, 6 | abvdom 20013 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅)) |
16 | 15 | 3expib 1120 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝐴 → (((𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
17 | 14, 16 | syl5bi 241 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 → (((𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
18 | 17 | expdimp 452 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
19 | 13, 18 | syl5bir 242 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (¬ (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
20 | 19 | necon4bd 2962 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
21 | 20 | ralrimivva 3114 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
22 | 21 | exlimiv 1934 | . . . . 5 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
23 | 12, 22 | sylbi 216 | . . . 4 ⊢ (𝐴 ≠ ∅ → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
24 | 23 | anim2i 616 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅) → (𝑅 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))))) |
25 | 3, 6, 4 | isdomn 20478 | . . 3 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))))) |
26 | 24, 25 | sylibr 233 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅) → 𝑅 ∈ Domn) |
27 | 11, 26 | impbii 208 | 1 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∅c0 4253 ifcif 4456 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 Basecbs 16840 .rcmulr 16889 0gc0g 17067 AbsValcabv 19991 NzRingcnzr 20441 Domncdomn 20464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-ico 13014 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-mgp 19636 df-ring 19700 df-abv 19992 df-nzr 20442 df-domn 20468 |
This theorem is referenced by: nrgdomn 23741 |
Copyright terms: Public domain | W3C validator |