Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abvn0b | Structured version Visualization version GIF version |
Description: Another characterization of domains, hinted at in abvtriv 19877: a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
abvn0b.b | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
abvn0b | ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnnzr 20333 | . . 3 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
2 | abvn0b.b | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
3 | eqid 2737 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | eqid 2737 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2737 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) = (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) | |
6 | eqid 2737 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
7 | domnring 20334 | . . . . 5 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | |
8 | 3, 6, 4 | domnmuln0 20336 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅)) |
9 | 2, 3, 4, 5, 6, 7, 8 | abvtrivd 19876 | . . . 4 ⊢ (𝑅 ∈ Domn → (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) ∈ 𝐴) |
10 | 9 | ne0d 4250 | . . 3 ⊢ (𝑅 ∈ Domn → 𝐴 ≠ ∅) |
11 | 1, 10 | jca 515 | . 2 ⊢ (𝑅 ∈ Domn → (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
12 | n0 4261 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
13 | neanior 3034 | . . . . . . . . 9 ⊢ ((𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)) ↔ ¬ (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))) | |
14 | an4 656 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) ↔ ((𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)))) | |
15 | 2, 3, 4, 6 | abvdom 19874 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅)) |
16 | 15 | 3expib 1124 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝐴 → (((𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
17 | 14, 16 | syl5bi 245 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 → (((𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
18 | 17 | expdimp 456 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
19 | 13, 18 | syl5bir 246 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (¬ (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
20 | 19 | necon4bd 2960 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
21 | 20 | ralrimivva 3112 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
22 | 21 | exlimiv 1938 | . . . . 5 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
23 | 12, 22 | sylbi 220 | . . . 4 ⊢ (𝐴 ≠ ∅ → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
24 | 23 | anim2i 620 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅) → (𝑅 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))))) |
25 | 3, 6, 4 | isdomn 20332 | . . 3 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))))) |
26 | 24, 25 | sylibr 237 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅) → 𝑅 ∈ Domn) |
27 | 11, 26 | impbii 212 | 1 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 = wceq 1543 ∃wex 1787 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 ∅c0 4237 ifcif 4439 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 0cc0 10729 1c1 10730 Basecbs 16760 .rcmulr 16803 0gc0g 16944 AbsValcabv 19852 NzRingcnzr 20295 Domncdomn 20318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-ico 12941 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-mgp 19505 df-ring 19564 df-abv 19853 df-nzr 20296 df-domn 20322 |
This theorem is referenced by: nrgdomn 23569 |
Copyright terms: Public domain | W3C validator |