| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvn0b | Structured version Visualization version GIF version | ||
| Description: Another characterization of domains, hinted at in abvtrivg 20742: a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| abvn0b.b | ⊢ 𝐴 = (AbsVal‘𝑅) |
| Ref | Expression |
|---|---|
| abvn0b | ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnnzr 20615 | . . 3 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
| 2 | abvn0b.b | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) = (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) | |
| 6 | 2, 3, 4, 5 | abvtrivg 20742 | . . . 4 ⊢ (𝑅 ∈ Domn → (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) ∈ 𝐴) |
| 7 | 6 | ne0d 4305 | . . 3 ⊢ (𝑅 ∈ Domn → 𝐴 ≠ ∅) |
| 8 | 1, 7 | jca 511 | . 2 ⊢ (𝑅 ∈ Domn → (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
| 9 | n0 4316 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 10 | neanior 3018 | . . . . . . . . 9 ⊢ ((𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)) ↔ ¬ (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))) | |
| 11 | an4 656 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) ↔ ((𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)))) | |
| 12 | eqid 2729 | . . . . . . . . . . . . 13 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 13 | 2, 3, 4, 12 | abvdom 20739 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅)) |
| 14 | 13 | 3expib 1122 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝐴 → (((𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
| 15 | 11, 14 | biimtrid 242 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 → (((𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
| 16 | 15 | expdimp 452 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
| 17 | 10, 16 | biimtrrid 243 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (¬ (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
| 18 | 17 | necon4bd 2945 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
| 19 | 18 | ralrimivva 3180 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
| 20 | 19 | exlimiv 1930 | . . . . 5 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
| 21 | 9, 20 | sylbi 217 | . . . 4 ⊢ (𝐴 ≠ ∅ → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
| 22 | 21 | anim2i 617 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅) → (𝑅 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))))) |
| 23 | 3, 12, 4 | isdomn 20614 | . . 3 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))))) |
| 24 | 22, 23 | sylibr 234 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅) → 𝑅 ∈ Domn) |
| 25 | 8, 24 | impbii 209 | 1 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∅c0 4296 ifcif 4488 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 Basecbs 17179 .rcmulr 17221 0gc0g 17402 NzRingcnzr 20421 Domncdomn 20601 AbsValcabv 20717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-ico 13312 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-nzr 20422 df-domn 20604 df-abv 20718 |
| This theorem is referenced by: nrgdomn 24559 |
| Copyright terms: Public domain | W3C validator |