MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppieq0 Structured version   Visualization version   GIF version

Theorem ppieq0 27219
Description: The prime-counting function π is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppieq0 (𝐴 ∈ ℝ → ((π𝐴) = 0 ↔ 𝐴 < 2))

Proof of Theorem ppieq0
StepHypRef Expression
1 2re 12340 . . . . 5 2 ∈ ℝ
2 lenlt 11339 . . . . 5 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2))
31, 2mpan 690 . . . 4 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2))
4 ppinncl 27217 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π𝐴) ∈ ℕ)
54nnne0d 12316 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π𝐴) ≠ 0)
65ex 412 . . . 4 (𝐴 ∈ ℝ → (2 ≤ 𝐴 → (π𝐴) ≠ 0))
73, 6sylbird 260 . . 3 (𝐴 ∈ ℝ → (¬ 𝐴 < 2 → (π𝐴) ≠ 0))
87necon4bd 2960 . 2 (𝐴 ∈ ℝ → ((π𝐴) = 0 → 𝐴 < 2))
9 reflcl 13836 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
109adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℝ)
11 1red 11262 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → 1 ∈ ℝ)
12 2z 12649 . . . . . . . . . 10 2 ∈ ℤ
13 fllt 13846 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (𝐴 < 2 ↔ (⌊‘𝐴) < 2))
1412, 13mpan2 691 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < 2 ↔ (⌊‘𝐴) < 2))
1514biimpa 476 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < 2)
16 df-2 12329 . . . . . . . 8 2 = (1 + 1)
1715, 16breqtrdi 5184 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < (1 + 1))
18 flcl 13835 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
1918adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℤ)
20 1z 12647 . . . . . . . 8 1 ∈ ℤ
21 zleltp1 12668 . . . . . . . 8 (((⌊‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1)))
2219, 20, 21sylancl 586 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1)))
2317, 22mpbird 257 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ≤ 1)
24 ppiwordi 27205 . . . . . 6 (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝐴) ≤ 1) → (π‘(⌊‘𝐴)) ≤ (π‘1))
2510, 11, 23, 24syl3anc 1373 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) ≤ (π‘1))
26 ppifl 27203 . . . . . 6 (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π𝐴))
2726adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) = (π𝐴))
28 ppi1 27207 . . . . . 6 (π‘1) = 0
2928a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘1) = 0)
3025, 27, 293brtr3d 5174 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) ≤ 0)
31 ppicl 27174 . . . . . 6 (𝐴 ∈ ℝ → (π𝐴) ∈ ℕ0)
3231adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) ∈ ℕ0)
33 nn0le0eq0 12554 . . . . 5 ((π𝐴) ∈ ℕ0 → ((π𝐴) ≤ 0 ↔ (π𝐴) = 0))
3432, 33syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((π𝐴) ≤ 0 ↔ (π𝐴) = 0))
3530, 34mpbid 232 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) = 0)
3635ex 412 . 2 (𝐴 ∈ ℝ → (𝐴 < 2 → (π𝐴) = 0))
378, 36impbid 212 1 (𝐴 ∈ ℝ → ((π𝐴) = 0 ↔ 𝐴 < 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cle 11296  2c2 12321  0cn0 12526  cz 12613  cfl 13830  πcppi 27137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-icc 13394  df-fz 13548  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709  df-ppi 27143
This theorem is referenced by:  ppiltx  27220
  Copyright terms: Public domain W3C validator