MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppieq0 Structured version   Visualization version   GIF version

Theorem ppieq0 27062
Description: The prime-counting function π is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppieq0 (𝐴 ∈ ℝ → ((π𝐴) = 0 ↔ 𝐴 < 2))

Proof of Theorem ppieq0
StepHypRef Expression
1 2re 12236 . . . . 5 2 ∈ ℝ
2 lenlt 11228 . . . . 5 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2))
31, 2mpan 690 . . . 4 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2))
4 ppinncl 27060 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π𝐴) ∈ ℕ)
54nnne0d 12212 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π𝐴) ≠ 0)
65ex 412 . . . 4 (𝐴 ∈ ℝ → (2 ≤ 𝐴 → (π𝐴) ≠ 0))
73, 6sylbird 260 . . 3 (𝐴 ∈ ℝ → (¬ 𝐴 < 2 → (π𝐴) ≠ 0))
87necon4bd 2945 . 2 (𝐴 ∈ ℝ → ((π𝐴) = 0 → 𝐴 < 2))
9 reflcl 13734 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
109adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℝ)
11 1red 11151 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → 1 ∈ ℝ)
12 2z 12541 . . . . . . . . . 10 2 ∈ ℤ
13 fllt 13744 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (𝐴 < 2 ↔ (⌊‘𝐴) < 2))
1412, 13mpan2 691 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < 2 ↔ (⌊‘𝐴) < 2))
1514biimpa 476 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < 2)
16 df-2 12225 . . . . . . . 8 2 = (1 + 1)
1715, 16breqtrdi 5143 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < (1 + 1))
18 flcl 13733 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
1918adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℤ)
20 1z 12539 . . . . . . . 8 1 ∈ ℤ
21 zleltp1 12560 . . . . . . . 8 (((⌊‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1)))
2219, 20, 21sylancl 586 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1)))
2317, 22mpbird 257 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ≤ 1)
24 ppiwordi 27048 . . . . . 6 (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝐴) ≤ 1) → (π‘(⌊‘𝐴)) ≤ (π‘1))
2510, 11, 23, 24syl3anc 1373 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) ≤ (π‘1))
26 ppifl 27046 . . . . . 6 (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π𝐴))
2726adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) = (π𝐴))
28 ppi1 27050 . . . . . 6 (π‘1) = 0
2928a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘1) = 0)
3025, 27, 293brtr3d 5133 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) ≤ 0)
31 ppicl 27017 . . . . . 6 (𝐴 ∈ ℝ → (π𝐴) ∈ ℕ0)
3231adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) ∈ ℕ0)
33 nn0le0eq0 12446 . . . . 5 ((π𝐴) ∈ ℕ0 → ((π𝐴) ≤ 0 ↔ (π𝐴) = 0))
3432, 33syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((π𝐴) ≤ 0 ↔ (π𝐴) = 0))
3530, 34mpbid 232 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) = 0)
3635ex 412 . 2 (𝐴 ∈ ℝ → (𝐴 < 2 → (π𝐴) = 0))
378, 36impbid 212 1 (𝐴 ∈ ℝ → ((π𝐴) = 0 ↔ 𝐴 < 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  2c2 12217  0cn0 12418  cz 12505  cfl 13728  πcppi 26980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-icc 13289  df-fz 13445  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-prm 16618  df-ppi 26986
This theorem is referenced by:  ppiltx  27063
  Copyright terms: Public domain W3C validator