| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ppieq0 | Structured version Visualization version GIF version | ||
| Description: The prime-counting function π is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| Ref | Expression |
|---|---|
| ppieq0 | ⊢ (𝐴 ∈ ℝ → ((π‘𝐴) = 0 ↔ 𝐴 < 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12194 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | lenlt 11186 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2)) | |
| 3 | 1, 2 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2)) |
| 4 | ppinncl 27106 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π‘𝐴) ∈ ℕ) | |
| 5 | 4 | nnne0d 12170 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π‘𝐴) ≠ 0) |
| 6 | 5 | ex 412 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2 ≤ 𝐴 → (π‘𝐴) ≠ 0)) |
| 7 | 3, 6 | sylbird 260 | . . 3 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 < 2 → (π‘𝐴) ≠ 0)) |
| 8 | 7 | necon4bd 2948 | . 2 ⊢ (𝐴 ∈ ℝ → ((π‘𝐴) = 0 → 𝐴 < 2)) |
| 9 | reflcl 13695 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℝ) |
| 11 | 1red 11108 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → 1 ∈ ℝ) | |
| 12 | 2z 12499 | . . . . . . . . . 10 ⊢ 2 ∈ ℤ | |
| 13 | fllt 13705 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (𝐴 < 2 ↔ (⌊‘𝐴) < 2)) | |
| 14 | 12, 13 | mpan2 691 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 < 2 ↔ (⌊‘𝐴) < 2)) |
| 15 | 14 | biimpa 476 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < 2) |
| 16 | df-2 12183 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
| 17 | 15, 16 | breqtrdi 5127 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < (1 + 1)) |
| 18 | flcl 13694 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
| 19 | 18 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℤ) |
| 20 | 1z 12497 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
| 21 | zleltp1 12518 | . . . . . . . 8 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1))) | |
| 22 | 19, 20, 21 | sylancl 586 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1))) |
| 23 | 17, 22 | mpbird 257 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ≤ 1) |
| 24 | ppiwordi 27094 | . . . . . 6 ⊢ (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝐴) ≤ 1) → (π‘(⌊‘𝐴)) ≤ (π‘1)) | |
| 25 | 10, 11, 23, 24 | syl3anc 1373 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) ≤ (π‘1)) |
| 26 | ppifl 27092 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π‘𝐴)) | |
| 27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) = (π‘𝐴)) |
| 28 | ppi1 27096 | . . . . . 6 ⊢ (π‘1) = 0 | |
| 29 | 28 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘1) = 0) |
| 30 | 25, 27, 29 | 3brtr3d 5117 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘𝐴) ≤ 0) |
| 31 | ppicl 27063 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (π‘𝐴) ∈ ℕ0) | |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘𝐴) ∈ ℕ0) |
| 33 | nn0le0eq0 12404 | . . . . 5 ⊢ ((π‘𝐴) ∈ ℕ0 → ((π‘𝐴) ≤ 0 ↔ (π‘𝐴) = 0)) | |
| 34 | 32, 33 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((π‘𝐴) ≤ 0 ↔ (π‘𝐴) = 0)) |
| 35 | 30, 34 | mpbid 232 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘𝐴) = 0) |
| 36 | 35 | ex 412 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 2 → (π‘𝐴) = 0)) |
| 37 | 8, 36 | impbid 212 | 1 ⊢ (𝐴 ∈ ℝ → ((π‘𝐴) = 0 ↔ 𝐴 < 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 0cc0 11001 1c1 11002 + caddc 11004 < clt 11141 ≤ cle 11142 2c2 12175 ℕ0cn0 12376 ℤcz 12463 ⌊cfl 13689 πcppi 27026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-rp 12886 df-icc 13247 df-fz 13403 df-fl 13691 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-prm 16578 df-ppi 27032 |
| This theorem is referenced by: ppiltx 27109 |
| Copyright terms: Public domain | W3C validator |