MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppieq0 Structured version   Visualization version   GIF version

Theorem ppieq0 26914
Description: The prime-counting function π is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppieq0 (𝐴 ∈ ℝ → ((π𝐴) = 0 ↔ 𝐴 < 2))

Proof of Theorem ppieq0
StepHypRef Expression
1 2re 12292 . . . . 5 2 ∈ ℝ
2 lenlt 11298 . . . . 5 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2))
31, 2mpan 686 . . . 4 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2))
4 ppinncl 26912 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π𝐴) ∈ ℕ)
54nnne0d 12268 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π𝐴) ≠ 0)
65ex 411 . . . 4 (𝐴 ∈ ℝ → (2 ≤ 𝐴 → (π𝐴) ≠ 0))
73, 6sylbird 259 . . 3 (𝐴 ∈ ℝ → (¬ 𝐴 < 2 → (π𝐴) ≠ 0))
87necon4bd 2958 . 2 (𝐴 ∈ ℝ → ((π𝐴) = 0 → 𝐴 < 2))
9 reflcl 13767 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
109adantr 479 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℝ)
11 1red 11221 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → 1 ∈ ℝ)
12 2z 12600 . . . . . . . . . 10 2 ∈ ℤ
13 fllt 13777 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (𝐴 < 2 ↔ (⌊‘𝐴) < 2))
1412, 13mpan2 687 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < 2 ↔ (⌊‘𝐴) < 2))
1514biimpa 475 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < 2)
16 df-2 12281 . . . . . . . 8 2 = (1 + 1)
1715, 16breqtrdi 5190 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < (1 + 1))
18 flcl 13766 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
1918adantr 479 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℤ)
20 1z 12598 . . . . . . . 8 1 ∈ ℤ
21 zleltp1 12619 . . . . . . . 8 (((⌊‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1)))
2219, 20, 21sylancl 584 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1)))
2317, 22mpbird 256 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ≤ 1)
24 ppiwordi 26900 . . . . . 6 (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝐴) ≤ 1) → (π‘(⌊‘𝐴)) ≤ (π‘1))
2510, 11, 23, 24syl3anc 1369 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) ≤ (π‘1))
26 ppifl 26898 . . . . . 6 (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π𝐴))
2726adantr 479 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) = (π𝐴))
28 ppi1 26902 . . . . . 6 (π‘1) = 0
2928a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘1) = 0)
3025, 27, 293brtr3d 5180 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) ≤ 0)
31 ppicl 26869 . . . . . 6 (𝐴 ∈ ℝ → (π𝐴) ∈ ℕ0)
3231adantr 479 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) ∈ ℕ0)
33 nn0le0eq0 12506 . . . . 5 ((π𝐴) ∈ ℕ0 → ((π𝐴) ≤ 0 ↔ (π𝐴) = 0))
3432, 33syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((π𝐴) ≤ 0 ↔ (π𝐴) = 0))
3530, 34mpbid 231 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) = 0)
3635ex 411 . 2 (𝐴 ∈ ℝ → (𝐴 < 2 → (π𝐴) = 0))
378, 36impbid 211 1 (𝐴 ∈ ℝ → ((π𝐴) = 0 ↔ 𝐴 < 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wne 2938   class class class wbr 5149  cfv 6544  (class class class)co 7413  cr 11113  0cc0 11114  1c1 11115   + caddc 11117   < clt 11254  cle 11255  2c2 12273  0cn0 12478  cz 12564  cfl 13761  πcppi 26832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-oadd 8474  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-sup 9441  df-inf 9442  df-dju 9900  df-card 9938  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-div 11878  df-nn 12219  df-2 12281  df-3 12282  df-n0 12479  df-xnn0 12551  df-z 12565  df-uz 12829  df-rp 12981  df-icc 13337  df-fz 13491  df-fl 13763  df-seq 13973  df-exp 14034  df-hash 14297  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-dvds 16204  df-prm 16615  df-ppi 26838
This theorem is referenced by:  ppiltx  26915
  Copyright terms: Public domain W3C validator