Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ppieq0 | Structured version Visualization version GIF version |
Description: The prime-counting function π is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
ppieq0 | ⊢ (𝐴 ∈ ℝ → ((π‘𝐴) = 0 ↔ 𝐴 < 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 11929 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | lenlt 10936 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2)) | |
3 | 1, 2 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2)) |
4 | ppinncl 26080 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π‘𝐴) ∈ ℕ) | |
5 | 4 | nnne0d 11905 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π‘𝐴) ≠ 0) |
6 | 5 | ex 416 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2 ≤ 𝐴 → (π‘𝐴) ≠ 0)) |
7 | 3, 6 | sylbird 263 | . . 3 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 < 2 → (π‘𝐴) ≠ 0)) |
8 | 7 | necon4bd 2961 | . 2 ⊢ (𝐴 ∈ ℝ → ((π‘𝐴) = 0 → 𝐴 < 2)) |
9 | reflcl 13396 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
10 | 9 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℝ) |
11 | 1red 10859 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → 1 ∈ ℝ) | |
12 | 2z 12234 | . . . . . . . . . 10 ⊢ 2 ∈ ℤ | |
13 | fllt 13406 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (𝐴 < 2 ↔ (⌊‘𝐴) < 2)) | |
14 | 12, 13 | mpan2 691 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 < 2 ↔ (⌊‘𝐴) < 2)) |
15 | 14 | biimpa 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < 2) |
16 | df-2 11918 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
17 | 15, 16 | breqtrdi 5109 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < (1 + 1)) |
18 | flcl 13395 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
19 | 18 | adantr 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℤ) |
20 | 1z 12232 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
21 | zleltp1 12253 | . . . . . . . 8 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1))) | |
22 | 19, 20, 21 | sylancl 589 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1))) |
23 | 17, 22 | mpbird 260 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ≤ 1) |
24 | ppiwordi 26068 | . . . . . 6 ⊢ (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝐴) ≤ 1) → (π‘(⌊‘𝐴)) ≤ (π‘1)) | |
25 | 10, 11, 23, 24 | syl3anc 1373 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) ≤ (π‘1)) |
26 | ppifl 26066 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π‘𝐴)) | |
27 | 26 | adantr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) = (π‘𝐴)) |
28 | ppi1 26070 | . . . . . 6 ⊢ (π‘1) = 0 | |
29 | 28 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘1) = 0) |
30 | 25, 27, 29 | 3brtr3d 5099 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘𝐴) ≤ 0) |
31 | ppicl 26037 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (π‘𝐴) ∈ ℕ0) | |
32 | 31 | adantr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘𝐴) ∈ ℕ0) |
33 | nn0le0eq0 12143 | . . . . 5 ⊢ ((π‘𝐴) ∈ ℕ0 → ((π‘𝐴) ≤ 0 ↔ (π‘𝐴) = 0)) | |
34 | 32, 33 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((π‘𝐴) ≤ 0 ↔ (π‘𝐴) = 0)) |
35 | 30, 34 | mpbid 235 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘𝐴) = 0) |
36 | 35 | ex 416 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 2 → (π‘𝐴) = 0)) |
37 | 8, 36 | impbid 215 | 1 ⊢ (𝐴 ∈ ℝ → ((π‘𝐴) = 0 ↔ 𝐴 < 2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 class class class wbr 5068 ‘cfv 6398 (class class class)co 7232 ℝcr 10753 0cc0 10754 1c1 10755 + caddc 10757 < clt 10892 ≤ cle 10893 2c2 11910 ℕ0cn0 12115 ℤcz 12201 ⌊cfl 13390 πcppi 26000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-pre-sup 10832 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-1st 7780 df-2nd 7781 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-2o 8224 df-oadd 8227 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-sup 9083 df-inf 9084 df-dju 9542 df-card 9580 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-div 11515 df-nn 11856 df-2 11918 df-3 11919 df-n0 12116 df-xnn0 12188 df-z 12202 df-uz 12464 df-rp 12612 df-icc 12967 df-fz 13121 df-fl 13392 df-seq 13600 df-exp 13661 df-hash 13922 df-cj 14687 df-re 14688 df-im 14689 df-sqrt 14823 df-abs 14824 df-dvds 15841 df-prm 16254 df-ppi 26006 |
This theorem is referenced by: ppiltx 26083 |
Copyright terms: Public domain | W3C validator |