MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppieq0 Structured version   Visualization version   GIF version

Theorem ppieq0 27084
Description: The prime-counting function π is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppieq0 (𝐴 ∈ ℝ → ((π𝐴) = 0 ↔ 𝐴 < 2))

Proof of Theorem ppieq0
StepHypRef Expression
1 2re 12202 . . . . 5 2 ∈ ℝ
2 lenlt 11194 . . . . 5 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2))
31, 2mpan 690 . . . 4 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2))
4 ppinncl 27082 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π𝐴) ∈ ℕ)
54nnne0d 12178 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π𝐴) ≠ 0)
65ex 412 . . . 4 (𝐴 ∈ ℝ → (2 ≤ 𝐴 → (π𝐴) ≠ 0))
73, 6sylbird 260 . . 3 (𝐴 ∈ ℝ → (¬ 𝐴 < 2 → (π𝐴) ≠ 0))
87necon4bd 2945 . 2 (𝐴 ∈ ℝ → ((π𝐴) = 0 → 𝐴 < 2))
9 reflcl 13700 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
109adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℝ)
11 1red 11116 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → 1 ∈ ℝ)
12 2z 12507 . . . . . . . . . 10 2 ∈ ℤ
13 fllt 13710 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (𝐴 < 2 ↔ (⌊‘𝐴) < 2))
1412, 13mpan2 691 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < 2 ↔ (⌊‘𝐴) < 2))
1514biimpa 476 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < 2)
16 df-2 12191 . . . . . . . 8 2 = (1 + 1)
1715, 16breqtrdi 5133 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < (1 + 1))
18 flcl 13699 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
1918adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℤ)
20 1z 12505 . . . . . . . 8 1 ∈ ℤ
21 zleltp1 12526 . . . . . . . 8 (((⌊‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1)))
2219, 20, 21sylancl 586 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1)))
2317, 22mpbird 257 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ≤ 1)
24 ppiwordi 27070 . . . . . 6 (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝐴) ≤ 1) → (π‘(⌊‘𝐴)) ≤ (π‘1))
2510, 11, 23, 24syl3anc 1373 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) ≤ (π‘1))
26 ppifl 27068 . . . . . 6 (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π𝐴))
2726adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) = (π𝐴))
28 ppi1 27072 . . . . . 6 (π‘1) = 0
2928a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘1) = 0)
3025, 27, 293brtr3d 5123 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) ≤ 0)
31 ppicl 27039 . . . . . 6 (𝐴 ∈ ℝ → (π𝐴) ∈ ℕ0)
3231adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) ∈ ℕ0)
33 nn0le0eq0 12412 . . . . 5 ((π𝐴) ∈ ℕ0 → ((π𝐴) ≤ 0 ↔ (π𝐴) = 0))
3432, 33syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((π𝐴) ≤ 0 ↔ (π𝐴) = 0))
3530, 34mpbid 232 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) = 0)
3635ex 412 . 2 (𝐴 ∈ ℝ → (𝐴 < 2 → (π𝐴) = 0))
378, 36impbid 212 1 (𝐴 ∈ ℝ → ((π𝐴) = 0 ↔ 𝐴 < 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cle 11150  2c2 12183  0cn0 12384  cz 12471  cfl 13694  πcppi 27002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-rp 12894  df-icc 13255  df-fz 13411  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-prm 16583  df-ppi 27008
This theorem is referenced by:  ppiltx  27085
  Copyright terms: Public domain W3C validator