Step | Hyp | Ref
| Expression |
1 | | fsumcl2lem.5 |
. . . 4
⊢ (𝜑 → 𝐴 ≠ ∅) |
2 | 1 | a1d 25 |
. . 3
⊢ (𝜑 → (¬ Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → 𝐴 ≠ ∅)) |
3 | 2 | necon4bd 2962 |
. 2
⊢ (𝜑 → (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆)) |
4 | | sumfc 15349 |
. . . . . . 7
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐵 |
5 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
6 | | simprl 767 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
ℕ) |
7 | | simprr 769 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
8 | | fsumcllem.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
9 | 8 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → 𝑆 ⊆ ℂ) |
10 | | fsumcllem.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
11 | 10 | fmpttd 6971 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑆) |
12 | 11 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑆) |
13 | 12 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ 𝑆) |
14 | 9, 13 | sseldd 3918 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) |
15 | | f1of 6700 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
16 | 7, 15 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
17 | | fvco3 6849 |
. . . . . . . . 9
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
18 | 16, 17 | sylan 579 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
19 | 5, 6, 7, 14, 18 | fsum 15360 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴))) |
20 | 4, 19 | eqtr3id 2793 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 = (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴))) |
21 | | nnuz 12550 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
22 | 6, 21 | eleqtrdi 2849 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
(ℤ≥‘1)) |
23 | | fco 6608 |
. . . . . . . . 9
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑆 ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶𝑆) |
24 | 12, 16, 23 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶𝑆) |
25 | 24 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) ∈ 𝑆) |
26 | | fsumcllem.2 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
27 | 26 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
28 | 22, 25, 27 | seqcl 13671 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴)) ∈ 𝑆) |
29 | 20, 28 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
30 | 29 | expr 456 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆)) |
31 | 30 | exlimdv 1937 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆)) |
32 | 31 | expimpd 453 |
. 2
⊢ (𝜑 → (((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆)) |
33 | | fsumcllem.3 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
34 | | fz1f1o 15350 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
35 | 33, 34 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
36 | 3, 32, 35 | mpjaod 856 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |