MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcl2lem Structured version   Visualization version   GIF version

Theorem fsumcl2lem 15683
Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
fsumcllem.1 (𝜑𝑆 ⊆ ℂ)
fsumcllem.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
fsumcllem.3 (𝜑𝐴 ∈ Fin)
fsumcllem.4 ((𝜑𝑘𝐴) → 𝐵𝑆)
fsumcl2lem.5 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
fsumcl2lem (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑘,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumcl2lem
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcl2lem.5 . . . 4 (𝜑𝐴 ≠ ∅)
21a1d 25 . . 3 (𝜑 → (¬ Σ𝑘𝐴 𝐵𝑆𝐴 ≠ ∅))
32necon4bd 2954 . 2 (𝜑 → (𝐴 = ∅ → Σ𝑘𝐴 𝐵𝑆))
4 sumfc 15661 . . . . . . 7 Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵
5 fveq2 6885 . . . . . . . 8 (𝑚 = (𝑓𝑥) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑥)))
6 simprl 768 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
7 simprr 770 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
8 fsumcllem.1 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
98ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → 𝑆 ⊆ ℂ)
10 fsumcllem.4 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵𝑆)
1110fmpttd 7110 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴𝑆)
1211adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴𝑆)
1312ffvelcdmda 7080 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ 𝑆)
149, 13sseldd 3978 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
15 f1of 6827 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
167, 15syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
17 fvco3 6984 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) = ((𝑘𝐴𝐵)‘(𝑓𝑥)))
1816, 17sylan 579 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) = ((𝑘𝐴𝐵)‘(𝑓𝑥)))
195, 6, 7, 14, 18fsum 15672 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
204, 19eqtr3id 2780 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵 = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
21 nnuz 12869 . . . . . . . 8 ℕ = (ℤ‘1)
226, 21eleqtrdi 2837 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
23 fco 6735 . . . . . . . . 9 (((𝑘𝐴𝐵):𝐴𝑆𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶𝑆)
2412, 16, 23syl2anc 583 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶𝑆)
2524ffvelcdmda 7080 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ 𝑆)
26 fsumcllem.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2726adantlr 712 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2822, 25, 27seqcl 13993 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) ∈ 𝑆)
2920, 28eqeltrd 2827 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵𝑆)
3029expr 456 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 𝐵𝑆))
3130exlimdv 1928 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 𝐵𝑆))
3231expimpd 453 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 𝐵𝑆))
33 fsumcllem.3 . . 3 (𝜑𝐴 ∈ Fin)
34 fz1f1o 15662 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
3533, 34syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
363, 32, 35mpjaod 857 1 (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844   = wceq 1533  wex 1773  wcel 2098  wne 2934  wss 3943  c0 4317  cmpt 5224  ccom 5673  wf 6533  1-1-ontowf1o 6536  cfv 6537  (class class class)co 7405  Fincfn 8941  cc 11110  1c1 11113   + caddc 11115  cn 12216  cuz 12826  ...cfz 13490  seqcseq 13972  chash 14295  Σcsu 15638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-fz 13491  df-fzo 13634  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-sum 15639
This theorem is referenced by:  fsumcllem  15684  fsumrpcl  15689
  Copyright terms: Public domain W3C validator