Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fres Structured version   Visualization version   GIF version

Theorem i1fres 24420
 Description: The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside 𝐴.) (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypothesis
Ref Expression
i1fres.1 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐹𝑥), 0))
Assertion
Ref Expression
i1fres ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem i1fres
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1ff 24391 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21adantr 484 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐹:ℝ⟶ℝ)
32ffnd 6505 . . . . . 6 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐹 Fn ℝ)
4 fnfvelrn 6846 . . . . . 6 ((𝐹 Fn ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran 𝐹)
53, 4sylan 583 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran 𝐹)
6 i1f0rn 24397 . . . . . 6 (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹)
76ad2antrr 725 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → 0 ∈ ran 𝐹)
85, 7ifcld 4470 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, (𝐹𝑥), 0) ∈ ran 𝐹)
9 i1fres.1 . . . 4 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐹𝑥), 0))
108, 9fmptd 6876 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺:ℝ⟶ran 𝐹)
112frnd 6511 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐹 ⊆ ℝ)
1210, 11fssd 6519 . 2 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺:ℝ⟶ℝ)
13 i1frn 24392 . . . 4 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
1413adantr 484 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐹 ∈ Fin)
1510frnd 6511 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐺 ⊆ ran 𝐹)
1614, 15ssfid 8792 . 2 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐺 ∈ Fin)
17 eleq1w 2835 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
18 fveq2 6664 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1917, 18ifbieq1d 4448 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → if(𝑥𝐴, (𝐹𝑥), 0) = if(𝑧𝐴, (𝐹𝑧), 0))
20 fvex 6677 . . . . . . . . . . . . . 14 (𝐹𝑧) ∈ V
21 c0ex 10687 . . . . . . . . . . . . . 14 0 ∈ V
2220, 21ifex 4474 . . . . . . . . . . . . 13 if(𝑧𝐴, (𝐹𝑧), 0) ∈ V
2319, 9, 22fvmpt 6765 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → (𝐺𝑧) = if(𝑧𝐴, (𝐹𝑧), 0))
2423adantl 485 . . . . . . . . . . 11 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) = if(𝑧𝐴, (𝐹𝑧), 0))
2524eqeq1d 2761 . . . . . . . . . 10 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦))
26 eldifsni 4684 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ran 𝐺 ∖ {0}) → 𝑦 ≠ 0)
2726ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → 𝑦 ≠ 0)
2827necomd 3007 . . . . . . . . . . . . 13 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → 0 ≠ 𝑦)
29 iffalse 4433 . . . . . . . . . . . . . 14 𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) = 0)
3029neeq1d 3011 . . . . . . . . . . . . 13 𝑧𝐴 → (if(𝑧𝐴, (𝐹𝑧), 0) ≠ 𝑦 ↔ 0 ≠ 𝑦))
3128, 30syl5ibrcom 250 . . . . . . . . . . . 12 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (¬ 𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) ≠ 𝑦))
3231necon4bd 2972 . . . . . . . . . . 11 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦𝑧𝐴))
3332pm4.71rd 566 . . . . . . . . . 10 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦 ↔ (𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦)))
3425, 33bitrd 282 . . . . . . . . 9 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ (𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦)))
35 iftrue 4430 . . . . . . . . . . 11 (𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) = (𝐹𝑧))
3635eqeq1d 2761 . . . . . . . . . 10 (𝑧𝐴 → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦 ↔ (𝐹𝑧) = 𝑦))
3736pm5.32i 578 . . . . . . . . 9 ((𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦) ↔ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦))
3834, 37bitrdi 290 . . . . . . . 8 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)))
3938pm5.32da 582 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦) ↔ (𝑧 ∈ ℝ ∧ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦))))
40 an12 644 . . . . . . 7 ((𝑧 ∈ ℝ ∧ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
4139, 40bitrdi 290 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦))))
4210ffnd 6505 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 Fn ℝ)
4342adantr 484 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐺 Fn ℝ)
44 fniniseg 6827 . . . . . . 7 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
4543, 44syl 17 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
463adantr 484 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐹 Fn ℝ)
47 fniniseg 6827 . . . . . . . 8 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
4846, 47syl 17 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
4948anbi2d 631 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦})) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦))))
5041, 45, 493bitr4d 314 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦}))))
51 elin 3877 . . . . 5 (𝑧 ∈ (𝐴 ∩ (𝐹 “ {𝑦})) ↔ (𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦})))
5250, 51bitr4di 292 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 ∩ (𝐹 “ {𝑦}))))
5352eqrdv 2757 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑦}) = (𝐴 ∩ (𝐹 “ {𝑦})))
54 simplr 768 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐴 ∈ dom vol)
55 i1fima 24393 . . . . 5 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑦}) ∈ dom vol)
5655ad2antrr 725 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐹 “ {𝑦}) ∈ dom vol)
57 inmbl 24257 . . . 4 ((𝐴 ∈ dom vol ∧ (𝐹 “ {𝑦}) ∈ dom vol) → (𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol)
5854, 56, 57syl2anc 587 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol)
5953, 58eqeltrd 2853 . 2 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑦}) ∈ dom vol)
6053fveq2d 6668 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) = (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))))
61 mblvol 24245 . . . . 5 ((𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol → (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
6258, 61syl 17 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
6360, 62eqtrd 2794 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
64 inss2 4137 . . . 4 (𝐴 ∩ (𝐹 “ {𝑦})) ⊆ (𝐹 “ {𝑦})
65 mblss 24246 . . . . 5 ((𝐹 “ {𝑦}) ∈ dom vol → (𝐹 “ {𝑦}) ⊆ ℝ)
6656, 65syl 17 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐹 “ {𝑦}) ⊆ ℝ)
67 mblvol 24245 . . . . . 6 ((𝐹 “ {𝑦}) ∈ dom vol → (vol‘(𝐹 “ {𝑦})) = (vol*‘(𝐹 “ {𝑦})))
6856, 67syl 17 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) = (vol*‘(𝐹 “ {𝑦})))
69 i1fima2sn 24395 . . . . . 6 ((𝐹 ∈ dom ∫1𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
7069adantlr 714 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
7168, 70eqeltrrd 2854 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐹 “ {𝑦})) ∈ ℝ)
72 ovolsscl 24201 . . . 4 (((𝐴 ∩ (𝐹 “ {𝑦})) ⊆ (𝐹 “ {𝑦}) ∧ (𝐹 “ {𝑦}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑦})) ∈ ℝ) → (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))) ∈ ℝ)
7364, 66, 71, 72mp3an2i 1464 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))) ∈ ℝ)
7463, 73eqeltrd 2853 . 2 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) ∈ ℝ)
7512, 16, 59, 74i1fd 24396 1 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1539   ∈ wcel 2112   ≠ wne 2952   ∖ cdif 3858   ∩ cin 3860   ⊆ wss 3861  ifcif 4424  {csn 4526   ↦ cmpt 5117  ◡ccnv 5528  dom cdm 5529  ran crn 5530   “ cima 5532   Fn wfn 6336  ⟶wf 6337  ‘cfv 6341  Fincfn 8541  ℝcr 10588  0cc0 10589  vol*covol 24177  volcvol 24178  ∫1citg1 24330 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-of 7412  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-2o 8120  df-er 8306  df-map 8425  df-pm 8426  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-fi 8922  df-sup 8953  df-inf 8954  df-oi 9021  df-dju 9377  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-n0 11949  df-z 12035  df-uz 12297  df-q 12403  df-rp 12445  df-xneg 12562  df-xadd 12563  df-xmul 12564  df-ioo 12797  df-ico 12799  df-icc 12800  df-fz 12954  df-fzo 13097  df-fl 13225  df-seq 13433  df-exp 13494  df-hash 13755  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-clim 14907  df-sum 15105  df-rest 16769  df-topgen 16790  df-psmet 20173  df-xmet 20174  df-met 20175  df-bl 20176  df-mopn 20177  df-top 21609  df-topon 21626  df-bases 21661  df-cmp 22102  df-ovol 24179  df-vol 24180  df-mbf 24334  df-itg1 24335 This theorem is referenced by:  i1fpos  24421  itg1climres  24429  itg2uba  24458  itg2splitlem  24463  itg2monolem1  24465  ftc1anclem5  35450  ftc1anclem7  35452
 Copyright terms: Public domain W3C validator