MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fres Structured version   Visualization version   GIF version

Theorem i1fres 25740
Description: The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside 𝐴.) (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypothesis
Ref Expression
i1fres.1 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐹𝑥), 0))
Assertion
Ref Expression
i1fres ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem i1fres
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1ff 25711 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21adantr 480 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐹:ℝ⟶ℝ)
32ffnd 6737 . . . . . 6 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐹 Fn ℝ)
4 fnfvelrn 7100 . . . . . 6 ((𝐹 Fn ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran 𝐹)
53, 4sylan 580 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran 𝐹)
6 i1f0rn 25717 . . . . . 6 (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹)
76ad2antrr 726 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → 0 ∈ ran 𝐹)
85, 7ifcld 4572 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, (𝐹𝑥), 0) ∈ ran 𝐹)
9 i1fres.1 . . . 4 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐹𝑥), 0))
108, 9fmptd 7134 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺:ℝ⟶ran 𝐹)
112frnd 6744 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐹 ⊆ ℝ)
1210, 11fssd 6753 . 2 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺:ℝ⟶ℝ)
13 i1frn 25712 . . . 4 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
1413adantr 480 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐹 ∈ Fin)
1510frnd 6744 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐺 ⊆ ran 𝐹)
1614, 15ssfid 9301 . 2 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐺 ∈ Fin)
17 eleq1w 2824 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
18 fveq2 6906 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1917, 18ifbieq1d 4550 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → if(𝑥𝐴, (𝐹𝑥), 0) = if(𝑧𝐴, (𝐹𝑧), 0))
20 fvex 6919 . . . . . . . . . . . . . 14 (𝐹𝑧) ∈ V
21 c0ex 11255 . . . . . . . . . . . . . 14 0 ∈ V
2220, 21ifex 4576 . . . . . . . . . . . . 13 if(𝑧𝐴, (𝐹𝑧), 0) ∈ V
2319, 9, 22fvmpt 7016 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → (𝐺𝑧) = if(𝑧𝐴, (𝐹𝑧), 0))
2423adantl 481 . . . . . . . . . . 11 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) = if(𝑧𝐴, (𝐹𝑧), 0))
2524eqeq1d 2739 . . . . . . . . . 10 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦))
26 eldifsni 4790 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ran 𝐺 ∖ {0}) → 𝑦 ≠ 0)
2726ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → 𝑦 ≠ 0)
2827necomd 2996 . . . . . . . . . . . . 13 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → 0 ≠ 𝑦)
29 iffalse 4534 . . . . . . . . . . . . . 14 𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) = 0)
3029neeq1d 3000 . . . . . . . . . . . . 13 𝑧𝐴 → (if(𝑧𝐴, (𝐹𝑧), 0) ≠ 𝑦 ↔ 0 ≠ 𝑦))
3128, 30syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (¬ 𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) ≠ 𝑦))
3231necon4bd 2960 . . . . . . . . . . 11 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦𝑧𝐴))
3332pm4.71rd 562 . . . . . . . . . 10 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦 ↔ (𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦)))
3425, 33bitrd 279 . . . . . . . . 9 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ (𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦)))
35 iftrue 4531 . . . . . . . . . . 11 (𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) = (𝐹𝑧))
3635eqeq1d 2739 . . . . . . . . . 10 (𝑧𝐴 → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦 ↔ (𝐹𝑧) = 𝑦))
3736pm5.32i 574 . . . . . . . . 9 ((𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦) ↔ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦))
3834, 37bitrdi 287 . . . . . . . 8 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)))
3938pm5.32da 579 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦) ↔ (𝑧 ∈ ℝ ∧ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦))))
40 an12 645 . . . . . . 7 ((𝑧 ∈ ℝ ∧ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
4139, 40bitrdi 287 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦))))
4210ffnd 6737 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 Fn ℝ)
4342adantr 480 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐺 Fn ℝ)
44 fniniseg 7080 . . . . . . 7 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
4543, 44syl 17 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
463adantr 480 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐹 Fn ℝ)
47 fniniseg 7080 . . . . . . . 8 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
4846, 47syl 17 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
4948anbi2d 630 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦})) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦))))
5041, 45, 493bitr4d 311 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦}))))
51 elin 3967 . . . . 5 (𝑧 ∈ (𝐴 ∩ (𝐹 “ {𝑦})) ↔ (𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦})))
5250, 51bitr4di 289 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 ∩ (𝐹 “ {𝑦}))))
5352eqrdv 2735 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑦}) = (𝐴 ∩ (𝐹 “ {𝑦})))
54 simplr 769 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐴 ∈ dom vol)
55 i1fima 25713 . . . . 5 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑦}) ∈ dom vol)
5655ad2antrr 726 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐹 “ {𝑦}) ∈ dom vol)
57 inmbl 25577 . . . 4 ((𝐴 ∈ dom vol ∧ (𝐹 “ {𝑦}) ∈ dom vol) → (𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol)
5854, 56, 57syl2anc 584 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol)
5953, 58eqeltrd 2841 . 2 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑦}) ∈ dom vol)
6053fveq2d 6910 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) = (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))))
61 mblvol 25565 . . . . 5 ((𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol → (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
6258, 61syl 17 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
6360, 62eqtrd 2777 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
64 inss2 4238 . . . 4 (𝐴 ∩ (𝐹 “ {𝑦})) ⊆ (𝐹 “ {𝑦})
65 mblss 25566 . . . . 5 ((𝐹 “ {𝑦}) ∈ dom vol → (𝐹 “ {𝑦}) ⊆ ℝ)
6656, 65syl 17 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐹 “ {𝑦}) ⊆ ℝ)
67 mblvol 25565 . . . . . 6 ((𝐹 “ {𝑦}) ∈ dom vol → (vol‘(𝐹 “ {𝑦})) = (vol*‘(𝐹 “ {𝑦})))
6856, 67syl 17 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) = (vol*‘(𝐹 “ {𝑦})))
69 i1fima2sn 25715 . . . . . 6 ((𝐹 ∈ dom ∫1𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
7069adantlr 715 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
7168, 70eqeltrrd 2842 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐹 “ {𝑦})) ∈ ℝ)
72 ovolsscl 25521 . . . 4 (((𝐴 ∩ (𝐹 “ {𝑦})) ⊆ (𝐹 “ {𝑦}) ∧ (𝐹 “ {𝑦}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑦})) ∈ ℝ) → (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))) ∈ ℝ)
7364, 66, 71, 72mp3an2i 1468 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))) ∈ ℝ)
7463, 73eqeltrd 2841 . 2 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) ∈ ℝ)
7512, 16, 59, 74i1fd 25716 1 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  cdif 3948  cin 3950  wss 3951  ifcif 4525  {csn 4626  cmpt 5225  ccnv 5684  dom cdm 5685  ran crn 5686  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  Fincfn 8985  cr 11154  0cc0 11155  vol*covol 25497  volcvol 25498  1citg1 25650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cmp 23395  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655
This theorem is referenced by:  i1fpos  25741  itg1climres  25749  itg2uba  25778  itg2splitlem  25783  itg2monolem1  25785  ftc1anclem5  37704  ftc1anclem7  37706
  Copyright terms: Public domain W3C validator