MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fres Structured version   Visualization version   GIF version

Theorem i1fres 25154
Description: The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside 𝐴.) (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypothesis
Ref Expression
i1fres.1 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐹𝑥), 0))
Assertion
Ref Expression
i1fres ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem i1fres
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1ff 25124 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21adantr 481 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐹:ℝ⟶ℝ)
32ffnd 6706 . . . . . 6 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐹 Fn ℝ)
4 fnfvelrn 7068 . . . . . 6 ((𝐹 Fn ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran 𝐹)
53, 4sylan 580 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran 𝐹)
6 i1f0rn 25130 . . . . . 6 (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹)
76ad2antrr 724 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → 0 ∈ ran 𝐹)
85, 7ifcld 4569 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, (𝐹𝑥), 0) ∈ ran 𝐹)
9 i1fres.1 . . . 4 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐹𝑥), 0))
108, 9fmptd 7099 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺:ℝ⟶ran 𝐹)
112frnd 6713 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐹 ⊆ ℝ)
1210, 11fssd 6723 . 2 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺:ℝ⟶ℝ)
13 i1frn 25125 . . . 4 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
1413adantr 481 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐹 ∈ Fin)
1510frnd 6713 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐺 ⊆ ran 𝐹)
1614, 15ssfid 9252 . 2 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐺 ∈ Fin)
17 eleq1w 2816 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
18 fveq2 6879 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1917, 18ifbieq1d 4547 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → if(𝑥𝐴, (𝐹𝑥), 0) = if(𝑧𝐴, (𝐹𝑧), 0))
20 fvex 6892 . . . . . . . . . . . . . 14 (𝐹𝑧) ∈ V
21 c0ex 11192 . . . . . . . . . . . . . 14 0 ∈ V
2220, 21ifex 4573 . . . . . . . . . . . . 13 if(𝑧𝐴, (𝐹𝑧), 0) ∈ V
2319, 9, 22fvmpt 6985 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → (𝐺𝑧) = if(𝑧𝐴, (𝐹𝑧), 0))
2423adantl 482 . . . . . . . . . . 11 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) = if(𝑧𝐴, (𝐹𝑧), 0))
2524eqeq1d 2734 . . . . . . . . . 10 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦))
26 eldifsni 4787 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ran 𝐺 ∖ {0}) → 𝑦 ≠ 0)
2726ad2antlr 725 . . . . . . . . . . . . . 14 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → 𝑦 ≠ 0)
2827necomd 2996 . . . . . . . . . . . . 13 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → 0 ≠ 𝑦)
29 iffalse 4532 . . . . . . . . . . . . . 14 𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) = 0)
3029neeq1d 3000 . . . . . . . . . . . . 13 𝑧𝐴 → (if(𝑧𝐴, (𝐹𝑧), 0) ≠ 𝑦 ↔ 0 ≠ 𝑦))
3128, 30syl5ibrcom 246 . . . . . . . . . . . 12 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (¬ 𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) ≠ 𝑦))
3231necon4bd 2960 . . . . . . . . . . 11 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦𝑧𝐴))
3332pm4.71rd 563 . . . . . . . . . 10 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦 ↔ (𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦)))
3425, 33bitrd 278 . . . . . . . . 9 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ (𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦)))
35 iftrue 4529 . . . . . . . . . . 11 (𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) = (𝐹𝑧))
3635eqeq1d 2734 . . . . . . . . . 10 (𝑧𝐴 → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦 ↔ (𝐹𝑧) = 𝑦))
3736pm5.32i 575 . . . . . . . . 9 ((𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦) ↔ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦))
3834, 37bitrdi 286 . . . . . . . 8 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)))
3938pm5.32da 579 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦) ↔ (𝑧 ∈ ℝ ∧ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦))))
40 an12 643 . . . . . . 7 ((𝑧 ∈ ℝ ∧ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
4139, 40bitrdi 286 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦))))
4210ffnd 6706 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 Fn ℝ)
4342adantr 481 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐺 Fn ℝ)
44 fniniseg 7047 . . . . . . 7 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
4543, 44syl 17 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
463adantr 481 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐹 Fn ℝ)
47 fniniseg 7047 . . . . . . . 8 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
4846, 47syl 17 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
4948anbi2d 629 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦})) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦))))
5041, 45, 493bitr4d 310 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦}))))
51 elin 3961 . . . . 5 (𝑧 ∈ (𝐴 ∩ (𝐹 “ {𝑦})) ↔ (𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦})))
5250, 51bitr4di 288 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 ∩ (𝐹 “ {𝑦}))))
5352eqrdv 2730 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑦}) = (𝐴 ∩ (𝐹 “ {𝑦})))
54 simplr 767 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐴 ∈ dom vol)
55 i1fima 25126 . . . . 5 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑦}) ∈ dom vol)
5655ad2antrr 724 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐹 “ {𝑦}) ∈ dom vol)
57 inmbl 24990 . . . 4 ((𝐴 ∈ dom vol ∧ (𝐹 “ {𝑦}) ∈ dom vol) → (𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol)
5854, 56, 57syl2anc 584 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol)
5953, 58eqeltrd 2833 . 2 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑦}) ∈ dom vol)
6053fveq2d 6883 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) = (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))))
61 mblvol 24978 . . . . 5 ((𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol → (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
6258, 61syl 17 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
6360, 62eqtrd 2772 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
64 inss2 4226 . . . 4 (𝐴 ∩ (𝐹 “ {𝑦})) ⊆ (𝐹 “ {𝑦})
65 mblss 24979 . . . . 5 ((𝐹 “ {𝑦}) ∈ dom vol → (𝐹 “ {𝑦}) ⊆ ℝ)
6656, 65syl 17 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐹 “ {𝑦}) ⊆ ℝ)
67 mblvol 24978 . . . . . 6 ((𝐹 “ {𝑦}) ∈ dom vol → (vol‘(𝐹 “ {𝑦})) = (vol*‘(𝐹 “ {𝑦})))
6856, 67syl 17 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) = (vol*‘(𝐹 “ {𝑦})))
69 i1fima2sn 25128 . . . . . 6 ((𝐹 ∈ dom ∫1𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
7069adantlr 713 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
7168, 70eqeltrrd 2834 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐹 “ {𝑦})) ∈ ℝ)
72 ovolsscl 24934 . . . 4 (((𝐴 ∩ (𝐹 “ {𝑦})) ⊆ (𝐹 “ {𝑦}) ∧ (𝐹 “ {𝑦}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑦})) ∈ ℝ) → (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))) ∈ ℝ)
7364, 66, 71, 72mp3an2i 1466 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))) ∈ ℝ)
7463, 73eqeltrd 2833 . 2 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) ∈ ℝ)
7512, 16, 59, 74i1fd 25129 1 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  cdif 3942  cin 3944  wss 3945  ifcif 4523  {csn 4623  cmpt 5225  ccnv 5669  dom cdm 5670  ran crn 5671  cima 5673   Fn wfn 6528  wf 6529  cfv 6533  Fincfn 8924  cr 11093  0cc0 11094  vol*covol 24910  volcvol 24911  1citg1 25063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-inf2 9620  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171  ax-pre-sup 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7654  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-2o 8451  df-er 8688  df-map 8807  df-pm 8808  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-fi 9390  df-sup 9421  df-inf 9422  df-oi 9489  df-dju 9880  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-div 11856  df-nn 12197  df-2 12259  df-3 12260  df-n0 12457  df-z 12543  df-uz 12807  df-q 12917  df-rp 12959  df-xneg 13076  df-xadd 13077  df-xmul 13078  df-ioo 13312  df-ico 13314  df-icc 13315  df-fz 13469  df-fzo 13612  df-fl 13741  df-seq 13951  df-exp 14012  df-hash 14275  df-cj 15030  df-re 15031  df-im 15032  df-sqrt 15166  df-abs 15167  df-clim 15416  df-sum 15617  df-rest 17352  df-topgen 17373  df-psmet 20872  df-xmet 20873  df-met 20874  df-bl 20875  df-mopn 20876  df-top 22327  df-topon 22344  df-bases 22380  df-cmp 22822  df-ovol 24912  df-vol 24913  df-mbf 25067  df-itg1 25068
This theorem is referenced by:  i1fpos  25155  itg1climres  25163  itg2uba  25192  itg2splitlem  25197  itg2monolem1  25199  ftc1anclem5  36433  ftc1anclem7  36435
  Copyright terms: Public domain W3C validator