![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnatlw | Structured version Visualization version GIF version |
Description: If the value of an atom equals the atom in a non-identity translation, the atom is under the fiducial hyperplane. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
ltrn2eq.l | ⊢ ≤ = (le‘𝐾) |
ltrn2eq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrn2eq.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrn2eq.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnatlw | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) → 𝑄 ≤ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1260 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) → (𝐹‘𝑄) = 𝑄) | |
2 | simpl1 1243 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
3 | simpl21 1336 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → 𝐹 ∈ 𝑇) | |
4 | simpl22 1338 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
5 | simpl23 1340 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → 𝑄 ∈ 𝐴) | |
6 | simpr 478 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → ¬ 𝑄 ≤ 𝑊) | |
7 | 5, 6 | jca 508 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
8 | simpl3l 1302 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → (𝐹‘𝑃) ≠ 𝑃) | |
9 | ltrn2eq.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
10 | ltrn2eq.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | ltrn2eq.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
12 | ltrn2eq.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
13 | 9, 10, 11, 12 | ltrnatneq 36203 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑄) ≠ 𝑄) |
14 | 2, 3, 4, 7, 8, 13 | syl131anc 1503 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → (𝐹‘𝑄) ≠ 𝑄) |
15 | 14 | ex 402 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) → (¬ 𝑄 ≤ 𝑊 → (𝐹‘𝑄) ≠ 𝑄)) |
16 | 15 | necon4bd 2991 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) → ((𝐹‘𝑄) = 𝑄 → 𝑄 ≤ 𝑊)) |
17 | 1, 16 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) → 𝑄 ≤ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 class class class wbr 4843 ‘cfv 6101 lecple 16274 Atomscatm 35284 HLchlt 35371 LHypclh 36005 LTrncltrn 36122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-map 8097 df-proset 17243 df-poset 17261 df-plt 17273 df-lub 17289 df-glb 17290 df-join 17291 df-meet 17292 df-p0 17354 df-p1 17355 df-lat 17361 df-clat 17423 df-oposet 35197 df-ol 35199 df-oml 35200 df-covers 35287 df-ats 35288 df-atl 35319 df-cvlat 35343 df-hlat 35372 df-lhyp 36009 df-laut 36010 df-ldil 36125 df-ltrn 36126 df-trl 36180 |
This theorem is referenced by: cdlemg18 36703 |
Copyright terms: Public domain | W3C validator |