Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnatlw Structured version   Visualization version   GIF version

Theorem ltrnatlw 37313
Description: If the value of an atom equals the atom in a non-identity translation, the atom is under the fiducial hyperplane. (Contributed by NM, 15-May-2013.)
Hypotheses
Ref Expression
ltrn2eq.l = (le‘𝐾)
ltrn2eq.a 𝐴 = (Atoms‘𝐾)
ltrn2eq.h 𝐻 = (LHyp‘𝐾)
ltrn2eq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnatlw (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → 𝑄 𝑊)

Proof of Theorem ltrnatlw
StepHypRef Expression
1 simp3r 1198 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → (𝐹𝑄) = 𝑄)
2 simpl1 1187 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simpl21 1247 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → 𝐹𝑇)
4 simpl22 1248 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simpl23 1249 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → 𝑄𝐴)
6 simpr 487 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → ¬ 𝑄 𝑊)
75, 6jca 514 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
8 simpl3l 1224 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝐹𝑃) ≠ 𝑃)
9 ltrn2eq.l . . . . . 6 = (le‘𝐾)
10 ltrn2eq.a . . . . . 6 𝐴 = (Atoms‘𝐾)
11 ltrn2eq.h . . . . . 6 𝐻 = (LHyp‘𝐾)
12 ltrn2eq.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
139, 10, 11, 12ltrnatneq 37312 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑄) ≠ 𝑄)
142, 3, 4, 7, 8, 13syl131anc 1379 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝐹𝑄) ≠ 𝑄)
1514ex 415 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → (¬ 𝑄 𝑊 → (𝐹𝑄) ≠ 𝑄))
1615necon4bd 3036 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → ((𝐹𝑄) = 𝑄𝑄 𝑊))
171, 16mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → 𝑄 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5058  cfv 6349  lecple 16566  Atomscatm 36393  HLchlt 36480  LHypclh 37114  LTrncltrn 37231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8402  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-lhyp 37118  df-laut 37119  df-ldil 37234  df-ltrn 37235  df-trl 37289
This theorem is referenced by:  cdlemg18  37812
  Copyright terms: Public domain W3C validator