| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnatlw | Structured version Visualization version GIF version | ||
| Description: If the value of an atom equals the atom in a non-identity translation, the atom is under the fiducial hyperplane. (Contributed by NM, 15-May-2013.) |
| Ref | Expression |
|---|---|
| ltrn2eq.l | ⊢ ≤ = (le‘𝐾) |
| ltrn2eq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrn2eq.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrn2eq.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrnatlw | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) → 𝑄 ≤ 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1203 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) → (𝐹‘𝑄) = 𝑄) | |
| 2 | simpl1 1192 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 3 | simpl21 1252 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → 𝐹 ∈ 𝑇) | |
| 4 | simpl22 1253 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
| 5 | simpl23 1254 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → 𝑄 ∈ 𝐴) | |
| 6 | simpr 484 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → ¬ 𝑄 ≤ 𝑊) | |
| 7 | 5, 6 | jca 511 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 8 | simpl3l 1229 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → (𝐹‘𝑃) ≠ 𝑃) | |
| 9 | ltrn2eq.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 10 | ltrn2eq.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 11 | ltrn2eq.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 12 | ltrn2eq.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 13 | 9, 10, 11, 12 | ltrnatneq 40176 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑄) ≠ 𝑄) |
| 14 | 2, 3, 4, 7, 8, 13 | syl131anc 1385 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) ∧ ¬ 𝑄 ≤ 𝑊) → (𝐹‘𝑄) ≠ 𝑄) |
| 15 | 14 | ex 412 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) → (¬ 𝑄 ≤ 𝑊 → (𝐹‘𝑄) ≠ 𝑄)) |
| 16 | 15 | necon4bd 2945 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) → ((𝐹‘𝑄) = 𝑄 → 𝑄 ≤ 𝑊)) |
| 17 | 1, 16 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐹‘𝑄) = 𝑄)) → 𝑄 ≤ 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 lecple 17227 Atomscatm 39256 HLchlt 39343 LHypclh 39978 LTrncltrn 40095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 |
| This theorem is referenced by: cdlemg18 40676 |
| Copyright terms: Public domain | W3C validator |