Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnatlw Structured version   Visualization version   GIF version

Theorem ltrnatlw 40202
Description: If the value of an atom equals the atom in a non-identity translation, the atom is under the fiducial hyperplane. (Contributed by NM, 15-May-2013.)
Hypotheses
Ref Expression
ltrn2eq.l = (le‘𝐾)
ltrn2eq.a 𝐴 = (Atoms‘𝐾)
ltrn2eq.h 𝐻 = (LHyp‘𝐾)
ltrn2eq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnatlw (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → 𝑄 𝑊)

Proof of Theorem ltrnatlw
StepHypRef Expression
1 simp3r 1203 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → (𝐹𝑄) = 𝑄)
2 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simpl21 1252 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → 𝐹𝑇)
4 simpl22 1253 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simpl23 1254 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → 𝑄𝐴)
6 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → ¬ 𝑄 𝑊)
75, 6jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
8 simpl3l 1229 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝐹𝑃) ≠ 𝑃)
9 ltrn2eq.l . . . . . 6 = (le‘𝐾)
10 ltrn2eq.a . . . . . 6 𝐴 = (Atoms‘𝐾)
11 ltrn2eq.h . . . . . 6 𝐻 = (LHyp‘𝐾)
12 ltrn2eq.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
139, 10, 11, 12ltrnatneq 40201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑄) ≠ 𝑄)
142, 3, 4, 7, 8, 13syl131anc 1385 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝐹𝑄) ≠ 𝑄)
1514ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → (¬ 𝑄 𝑊 → (𝐹𝑄) ≠ 𝑄))
1615necon4bd 2952 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → ((𝐹𝑄) = 𝑄𝑄 𝑊))
171, 16mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → 𝑄 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  lecple 17278  Atomscatm 39281  HLchlt 39368  LHypclh 40003  LTrncltrn 40120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178
This theorem is referenced by:  cdlemg18  40701
  Copyright terms: Public domain W3C validator