MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem4OLD Structured version   Visualization version   GIF version

Theorem tdeglem4OLD 24773
Description: Obsolete version of tdeglem4 24772 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 29-Mar-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem4OLD ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑉   ,𝑋,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)   𝑉(𝑚)

Proof of Theorem tdeglem4OLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexnal 3165 . . . . 5 (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 ↔ ¬ ∀𝑥𝐼 (𝑋𝑥) = 0)
2 df-ne 2952 . . . . . . 7 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
3 oveq2 7164 . . . . . . . . . . . 12 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
4 tdeglem.h . . . . . . . . . . . 12 𝐻 = (𝐴 ↦ (ℂfld Σg ))
5 ovex 7189 . . . . . . . . . . . 12 (ℂfld Σg 𝑋) ∈ V
63, 4, 5fvmpt 6764 . . . . . . . . . . 11 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
76ad2antlr 726 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = (ℂfld Σg 𝑋))
8 tdeglem.a . . . . . . . . . . . . . 14 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagfOLD 20694 . . . . . . . . . . . . 13 ((𝐼𝑉𝑋𝐴) → 𝑋:𝐼⟶ℕ0)
109feqmptd 6726 . . . . . . . . . . . 12 ((𝐼𝑉𝑋𝐴) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1110adantr 484 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1211oveq2d 7172 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg 𝑋) = (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))))
13 cnfldbas 20183 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
14 cnfld0 20203 . . . . . . . . . . 11 0 = (0g‘ℂfld)
15 cnfldadd 20184 . . . . . . . . . . 11 + = (+g‘ℂfld)
16 cnring 20201 . . . . . . . . . . . 12 fld ∈ Ring
17 ringcmn 19415 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
1816, 17mp1i 13 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ CMnd)
19 simpll 766 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼𝑉)
209adantr 484 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋:𝐼⟶ℕ0)
2120ffvelrnda 6848 . . . . . . . . . . . 12 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
2221nn0cnd 12009 . . . . . . . . . . 11 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
238psrbagfsuppOLD 20696 . . . . . . . . . . . . . 14 ((𝑋𝐴𝐼𝑉) → 𝑋 finSupp 0)
2423ancoms 462 . . . . . . . . . . . . 13 ((𝐼𝑉𝑋𝐴) → 𝑋 finSupp 0)
2524adantr 484 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 finSupp 0)
2611, 25eqbrtrrd 5060 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
27 incom 4108 . . . . . . . . . . . . 13 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ({𝑥} ∩ (𝐼 ∖ {𝑥}))
28 disjdif 4371 . . . . . . . . . . . . 13 ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅
2927, 28eqtri 2781 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅
3029a1i 11 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅)
31 difsnid 4703 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝐼 ∖ {𝑥}) ∪ {𝑥}) = 𝐼)
3231eqcomd 2764 . . . . . . . . . . . 12 (𝑥𝐼𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3332ad2antrl 727 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3413, 14, 15, 18, 19, 22, 26, 30, 33gsumsplit2 19130 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
357, 12, 343eqtrd 2797 . . . . . . . . 9 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
36 difexg 5201 . . . . . . . . . . . . 13 (𝐼𝑉 → (𝐼 ∖ {𝑥}) ∈ V)
3736ad2antrr 725 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐼 ∖ {𝑥}) ∈ V)
38 nn0subm 20234 . . . . . . . . . . . . 13 0 ∈ (SubMnd‘ℂfld)
3938a1i 11 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℕ0 ∈ (SubMnd‘ℂfld))
40 eldifi 4034 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) → 𝑦𝐼)
41 ffvelrn 6846 . . . . . . . . . . . . . 14 ((𝑋:𝐼⟶ℕ0𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
4220, 40, 41syl2an 598 . . . . . . . . . . . . 13 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑋𝑦) ∈ ℕ0)
4342fmpttd 6876 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)):(𝐼 ∖ {𝑥})⟶ℕ0)
4436mptexd 6984 . . . . . . . . . . . . . 14 (𝐼𝑉 → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
4544ad2antrr 725 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
46 funmpt 6378 . . . . . . . . . . . . . 14 Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
4746a1i 11 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
48 funmpt 6378 . . . . . . . . . . . . . 14 Fun (𝑦𝐼 ↦ (𝑋𝑦))
49 difss 4039 . . . . . . . . . . . . . . . 16 (𝐼 ∖ {𝑥}) ⊆ 𝐼
50 resmpt 5882 . . . . . . . . . . . . . . . 16 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) = (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
5149, 50ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) = (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
52 resss 5853 . . . . . . . . . . . . . . 15 ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
5351, 52eqsstrri 3929 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
54 mptexg 6981 . . . . . . . . . . . . . . 15 (𝐼𝑉 → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
5554ad2antrr 725 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
56 funsssuppss 7870 . . . . . . . . . . . . . 14 ((Fun (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
5748, 53, 55, 56mp3an12i 1462 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
58 fsuppsssupp 8895 . . . . . . . . . . . . 13 ((((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V ∧ Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∧ ((𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0 ∧ ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5945, 47, 26, 57, 58syl22anc 837 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
6014, 18, 37, 39, 43, 59gsumsubmcl 19120 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0)
61 ringmnd 19388 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
6216, 61mp1i 13 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ Mnd)
63 simprl 770 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑥𝐼)
6420, 63ffvelrnd 6849 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ0)
6564nn0cnd 12009 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℂ)
66 fveq2 6663 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋𝑦) = (𝑋𝑥))
6713, 66gsumsn 19155 . . . . . . . . . . . . 13 ((ℂfld ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑋𝑥) ∈ ℂ) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
6862, 63, 65, 67syl3anc 1368 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
69 simprr 772 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ≠ 0)
7069, 2sylib 221 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ¬ (𝑋𝑥) = 0)
71 elnn0 11949 . . . . . . . . . . . . . 14 ((𝑋𝑥) ∈ ℕ0 ↔ ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
7264, 71sylib 221 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
73 orel2 888 . . . . . . . . . . . . 13 (¬ (𝑋𝑥) = 0 → (((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0) → (𝑋𝑥) ∈ ℕ))
7470, 72, 73sylc 65 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ)
7568, 74eqeltrd 2852 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ)
76 nn0nnaddcl 11978 . . . . . . . . . . 11 (((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0 ∧ (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7760, 75, 76syl2anc 587 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7877nnne0d 11737 . . . . . . . . 9 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ≠ 0)
7935, 78eqnetrd 3018 . . . . . . . 8 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) ≠ 0)
8079expr 460 . . . . . . 7 (((𝐼𝑉𝑋𝐴) ∧ 𝑥𝐼) → ((𝑋𝑥) ≠ 0 → (𝐻𝑋) ≠ 0))
812, 80syl5bir 246 . . . . . 6 (((𝐼𝑉𝑋𝐴) ∧ 𝑥𝐼) → (¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
8281rexlimdva 3208 . . . . 5 ((𝐼𝑉𝑋𝐴) → (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
831, 82syl5bir 246 . . . 4 ((𝐼𝑉𝑋𝐴) → (¬ ∀𝑥𝐼 (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
8483necon4bd 2971 . . 3 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 → ∀𝑥𝐼 (𝑋𝑥) = 0))
859ffnd 6504 . . . . 5 ((𝐼𝑉𝑋𝐴) → 𝑋 Fn 𝐼)
86 0nn0 11962 . . . . . 6 0 ∈ ℕ0
87 fnconstg 6557 . . . . . 6 (0 ∈ ℕ0 → (𝐼 × {0}) Fn 𝐼)
8886, 87mp1i 13 . . . . 5 ((𝐼𝑉𝑋𝐴) → (𝐼 × {0}) Fn 𝐼)
89 eqfnfv 6798 . . . . 5 ((𝑋 Fn 𝐼 ∧ (𝐼 × {0}) Fn 𝐼) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
9085, 88, 89syl2anc 587 . . . 4 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
91 c0ex 10686 . . . . . . 7 0 ∈ V
9291fvconst2 6963 . . . . . 6 (𝑥𝐼 → ((𝐼 × {0})‘𝑥) = 0)
9392eqeq2d 2769 . . . . 5 (𝑥𝐼 → ((𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
9493ralbiia 3096 . . . 4 (∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0)
9590, 94bitrdi 290 . . 3 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0))
9684, 95sylibrd 262 . 2 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 → 𝑋 = (𝐼 × {0})))
978psrbag0 20836 . . . . . 6 (𝐼𝑉 → (𝐼 × {0}) ∈ 𝐴)
9897adantr 484 . . . . 5 ((𝐼𝑉𝑋𝐴) → (𝐼 × {0}) ∈ 𝐴)
99 oveq2 7164 . . . . . 6 ( = (𝐼 × {0}) → (ℂfld Σg ) = (ℂfld Σg (𝐼 × {0})))
100 ovex 7189 . . . . . 6 (ℂfld Σg (𝐼 × {0})) ∈ V
10199, 4, 100fvmpt 6764 . . . . 5 ((𝐼 × {0}) ∈ 𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
10298, 101syl 17 . . . 4 ((𝐼𝑉𝑋𝐴) → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
103 fconstmpt 5588 . . . . . 6 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
104103oveq2i 7167 . . . . 5 (ℂfld Σg (𝐼 × {0})) = (ℂfld Σg (𝑥𝐼 ↦ 0))
10516, 61ax-mp 5 . . . . . . 7 fld ∈ Mnd
10614gsumz 18079 . . . . . . 7 ((ℂfld ∈ Mnd ∧ 𝐼𝑉) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
107105, 106mpan 689 . . . . . 6 (𝐼𝑉 → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
108107adantr 484 . . . . 5 ((𝐼𝑉𝑋𝐴) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
109104, 108syl5eq 2805 . . . 4 ((𝐼𝑉𝑋𝐴) → (ℂfld Σg (𝐼 × {0})) = 0)
110102, 109eqtrd 2793 . . 3 ((𝐼𝑉𝑋𝐴) → (𝐻‘(𝐼 × {0})) = 0)
111 fveqeq2 6672 . . 3 (𝑋 = (𝐼 × {0}) → ((𝐻𝑋) = 0 ↔ (𝐻‘(𝐼 × {0})) = 0))
112110, 111syl5ibrcom 250 . 2 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) → (𝐻𝑋) = 0))
11396, 112impbid 215 1 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  {crab 3074  Vcvv 3409  cdif 3857  cun 3858  cin 3859  wss 3860  c0 4227  {csn 4525   class class class wbr 5036  cmpt 5116   × cxp 5526  ccnv 5527  cres 5530  cima 5531  Fun wfun 6334   Fn wfn 6335  wf 6336  cfv 6340  (class class class)co 7156   supp csupp 7841  m cmap 8422  Fincfn 8540   finSupp cfsupp 8879  cc 10586  0cc0 10588   + caddc 10591  cn 11687  0cn0 11947   Σg cgsu 16785  Mndcmnd 17990  SubMndcsubmnd 18034  CMndccmn 18986  Ringcrg 19378  fldccnfld 20179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-addf 10667  ax-mulf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-fz 12953  df-fzo 13096  df-seq 13432  df-hash 13754  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-starv 16651  df-tset 16655  df-ple 16656  df-ds 16658  df-unif 16659  df-0g 16786  df-gsum 16787  df-mre 16928  df-mrc 16929  df-acs 16931  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-submnd 18036  df-grp 18185  df-minusg 18186  df-mulg 18305  df-cntz 18527  df-cmn 18988  df-abl 18989  df-mgp 19321  df-ur 19333  df-ring 19380  df-cring 19381  df-cnfld 20180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator