MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem4OLD Structured version   Visualization version   GIF version

Theorem tdeglem4OLD 25130
Description: Obsolete version of tdeglem4 25129 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 29-Mar-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem4OLD ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑉   ,𝑋,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)   𝑉(𝑚)

Proof of Theorem tdeglem4OLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexnal 3165 . . . . 5 (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 ↔ ¬ ∀𝑥𝐼 (𝑋𝑥) = 0)
2 df-ne 2943 . . . . . . 7 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
3 oveq2 7263 . . . . . . . . . . . 12 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
4 tdeglem.h . . . . . . . . . . . 12 𝐻 = (𝐴 ↦ (ℂfld Σg ))
5 ovex 7288 . . . . . . . . . . . 12 (ℂfld Σg 𝑋) ∈ V
63, 4, 5fvmpt 6857 . . . . . . . . . . 11 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
76ad2antlr 723 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = (ℂfld Σg 𝑋))
8 tdeglem.a . . . . . . . . . . . . . 14 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagfOLD 21032 . . . . . . . . . . . . 13 ((𝐼𝑉𝑋𝐴) → 𝑋:𝐼⟶ℕ0)
109feqmptd 6819 . . . . . . . . . . . 12 ((𝐼𝑉𝑋𝐴) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1110adantr 480 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1211oveq2d 7271 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg 𝑋) = (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))))
13 cnfldbas 20514 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
14 cnfld0 20534 . . . . . . . . . . 11 0 = (0g‘ℂfld)
15 cnfldadd 20515 . . . . . . . . . . 11 + = (+g‘ℂfld)
16 cnring 20532 . . . . . . . . . . . 12 fld ∈ Ring
17 ringcmn 19735 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
1816, 17mp1i 13 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ CMnd)
19 simpll 763 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼𝑉)
209adantr 480 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋:𝐼⟶ℕ0)
2120ffvelrnda 6943 . . . . . . . . . . . 12 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
2221nn0cnd 12225 . . . . . . . . . . 11 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
238psrbagfsuppOLD 21034 . . . . . . . . . . . . . 14 ((𝑋𝐴𝐼𝑉) → 𝑋 finSupp 0)
2423ancoms 458 . . . . . . . . . . . . 13 ((𝐼𝑉𝑋𝐴) → 𝑋 finSupp 0)
2524adantr 480 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 finSupp 0)
2611, 25eqbrtrrd 5094 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
27 incom 4131 . . . . . . . . . . . . 13 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ({𝑥} ∩ (𝐼 ∖ {𝑥}))
28 disjdif 4402 . . . . . . . . . . . . 13 ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅
2927, 28eqtri 2766 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅
3029a1i 11 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅)
31 difsnid 4740 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝐼 ∖ {𝑥}) ∪ {𝑥}) = 𝐼)
3231eqcomd 2744 . . . . . . . . . . . 12 (𝑥𝐼𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3332ad2antrl 724 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3413, 14, 15, 18, 19, 22, 26, 30, 33gsumsplit2 19445 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
357, 12, 343eqtrd 2782 . . . . . . . . 9 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
36 difexg 5246 . . . . . . . . . . . . 13 (𝐼𝑉 → (𝐼 ∖ {𝑥}) ∈ V)
3736ad2antrr 722 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐼 ∖ {𝑥}) ∈ V)
38 nn0subm 20565 . . . . . . . . . . . . 13 0 ∈ (SubMnd‘ℂfld)
3938a1i 11 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℕ0 ∈ (SubMnd‘ℂfld))
40 eldifi 4057 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) → 𝑦𝐼)
41 ffvelrn 6941 . . . . . . . . . . . . . 14 ((𝑋:𝐼⟶ℕ0𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
4220, 40, 41syl2an 595 . . . . . . . . . . . . 13 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑋𝑦) ∈ ℕ0)
4342fmpttd 6971 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)):(𝐼 ∖ {𝑥})⟶ℕ0)
4436mptexd 7082 . . . . . . . . . . . . . 14 (𝐼𝑉 → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
4544ad2antrr 722 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
46 funmpt 6456 . . . . . . . . . . . . . 14 Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
4746a1i 11 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
48 funmpt 6456 . . . . . . . . . . . . . 14 Fun (𝑦𝐼 ↦ (𝑋𝑦))
49 difss 4062 . . . . . . . . . . . . . . . 16 (𝐼 ∖ {𝑥}) ⊆ 𝐼
50 resmpt 5934 . . . . . . . . . . . . . . . 16 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) = (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
5149, 50ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) = (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
52 resss 5905 . . . . . . . . . . . . . . 15 ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
5351, 52eqsstrri 3952 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
54 mptexg 7079 . . . . . . . . . . . . . . 15 (𝐼𝑉 → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
5554ad2antrr 722 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
56 funsssuppss 7977 . . . . . . . . . . . . . 14 ((Fun (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
5748, 53, 55, 56mp3an12i 1463 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
58 fsuppsssupp 9074 . . . . . . . . . . . . 13 ((((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V ∧ Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∧ ((𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0 ∧ ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5945, 47, 26, 57, 58syl22anc 835 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
6014, 18, 37, 39, 43, 59gsumsubmcl 19435 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0)
61 ringmnd 19708 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
6216, 61mp1i 13 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ Mnd)
63 simprl 767 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑥𝐼)
6420, 63ffvelrnd 6944 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ0)
6564nn0cnd 12225 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℂ)
66 fveq2 6756 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋𝑦) = (𝑋𝑥))
6713, 66gsumsn 19470 . . . . . . . . . . . . 13 ((ℂfld ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑋𝑥) ∈ ℂ) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
6862, 63, 65, 67syl3anc 1369 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
69 simprr 769 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ≠ 0)
7069, 2sylib 217 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ¬ (𝑋𝑥) = 0)
71 elnn0 12165 . . . . . . . . . . . . . 14 ((𝑋𝑥) ∈ ℕ0 ↔ ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
7264, 71sylib 217 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
73 orel2 887 . . . . . . . . . . . . 13 (¬ (𝑋𝑥) = 0 → (((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0) → (𝑋𝑥) ∈ ℕ))
7470, 72, 73sylc 65 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ)
7568, 74eqeltrd 2839 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ)
76 nn0nnaddcl 12194 . . . . . . . . . . 11 (((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0 ∧ (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7760, 75, 76syl2anc 583 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7877nnne0d 11953 . . . . . . . . 9 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ≠ 0)
7935, 78eqnetrd 3010 . . . . . . . 8 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) ≠ 0)
8079expr 456 . . . . . . 7 (((𝐼𝑉𝑋𝐴) ∧ 𝑥𝐼) → ((𝑋𝑥) ≠ 0 → (𝐻𝑋) ≠ 0))
812, 80syl5bir 242 . . . . . 6 (((𝐼𝑉𝑋𝐴) ∧ 𝑥𝐼) → (¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
8281rexlimdva 3212 . . . . 5 ((𝐼𝑉𝑋𝐴) → (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
831, 82syl5bir 242 . . . 4 ((𝐼𝑉𝑋𝐴) → (¬ ∀𝑥𝐼 (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
8483necon4bd 2962 . . 3 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 → ∀𝑥𝐼 (𝑋𝑥) = 0))
859ffnd 6585 . . . . 5 ((𝐼𝑉𝑋𝐴) → 𝑋 Fn 𝐼)
86 0nn0 12178 . . . . . 6 0 ∈ ℕ0
87 fnconstg 6646 . . . . . 6 (0 ∈ ℕ0 → (𝐼 × {0}) Fn 𝐼)
8886, 87mp1i 13 . . . . 5 ((𝐼𝑉𝑋𝐴) → (𝐼 × {0}) Fn 𝐼)
89 eqfnfv 6891 . . . . 5 ((𝑋 Fn 𝐼 ∧ (𝐼 × {0}) Fn 𝐼) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
9085, 88, 89syl2anc 583 . . . 4 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
91 c0ex 10900 . . . . . . 7 0 ∈ V
9291fvconst2 7061 . . . . . 6 (𝑥𝐼 → ((𝐼 × {0})‘𝑥) = 0)
9392eqeq2d 2749 . . . . 5 (𝑥𝐼 → ((𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
9493ralbiia 3089 . . . 4 (∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0)
9590, 94bitrdi 286 . . 3 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0))
9684, 95sylibrd 258 . 2 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 → 𝑋 = (𝐼 × {0})))
978psrbag0 21180 . . . . . 6 (𝐼𝑉 → (𝐼 × {0}) ∈ 𝐴)
9897adantr 480 . . . . 5 ((𝐼𝑉𝑋𝐴) → (𝐼 × {0}) ∈ 𝐴)
99 oveq2 7263 . . . . . 6 ( = (𝐼 × {0}) → (ℂfld Σg ) = (ℂfld Σg (𝐼 × {0})))
100 ovex 7288 . . . . . 6 (ℂfld Σg (𝐼 × {0})) ∈ V
10199, 4, 100fvmpt 6857 . . . . 5 ((𝐼 × {0}) ∈ 𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
10298, 101syl 17 . . . 4 ((𝐼𝑉𝑋𝐴) → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
103 fconstmpt 5640 . . . . . 6 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
104103oveq2i 7266 . . . . 5 (ℂfld Σg (𝐼 × {0})) = (ℂfld Σg (𝑥𝐼 ↦ 0))
10516, 61ax-mp 5 . . . . . . 7 fld ∈ Mnd
10614gsumz 18389 . . . . . . 7 ((ℂfld ∈ Mnd ∧ 𝐼𝑉) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
107105, 106mpan 686 . . . . . 6 (𝐼𝑉 → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
108107adantr 480 . . . . 5 ((𝐼𝑉𝑋𝐴) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
109104, 108syl5eq 2791 . . . 4 ((𝐼𝑉𝑋𝐴) → (ℂfld Σg (𝐼 × {0})) = 0)
110102, 109eqtrd 2778 . . 3 ((𝐼𝑉𝑋𝐴) → (𝐻‘(𝐼 × {0})) = 0)
111 fveqeq2 6765 . . 3 (𝑋 = (𝐼 × {0}) → ((𝐻𝑋) = 0 ↔ (𝐻‘(𝐼 × {0})) = 0))
112110, 111syl5ibrcom 246 . 2 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) → (𝐻𝑋) = 0))
11396, 112impbid 211 1 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  cres 5582  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  cc 10800  0cc0 10802   + caddc 10805  cn 11903  0cn0 12163   Σg cgsu 17068  Mndcmnd 18300  SubMndcsubmnd 18344  CMndccmn 19301  Ringcrg 19698  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-cnfld 20511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator