MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem4OLD Structured version   Visualization version   GIF version

Theorem tdeglem4OLD 25425
Description: Obsolete version of tdeglem4 25424 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 29-Mar-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem4OLD ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑉   ,𝑋,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)   𝑉(𝑚)

Proof of Theorem tdeglem4OLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexnal 3103 . . . . 5 (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 ↔ ¬ ∀𝑥𝐼 (𝑋𝑥) = 0)
2 df-ne 2944 . . . . . . 7 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
3 oveq2 7365 . . . . . . . . . . . 12 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
4 tdeglem.h . . . . . . . . . . . 12 𝐻 = (𝐴 ↦ (ℂfld Σg ))
5 ovex 7390 . . . . . . . . . . . 12 (ℂfld Σg 𝑋) ∈ V
63, 4, 5fvmpt 6948 . . . . . . . . . . 11 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
76ad2antlr 725 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = (ℂfld Σg 𝑋))
8 tdeglem.a . . . . . . . . . . . . . 14 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagfOLD 21321 . . . . . . . . . . . . 13 ((𝐼𝑉𝑋𝐴) → 𝑋:𝐼⟶ℕ0)
109feqmptd 6910 . . . . . . . . . . . 12 ((𝐼𝑉𝑋𝐴) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1110adantr 481 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1211oveq2d 7373 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg 𝑋) = (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))))
13 cnfldbas 20800 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
14 cnfld0 20821 . . . . . . . . . . 11 0 = (0g‘ℂfld)
15 cnfldadd 20801 . . . . . . . . . . 11 + = (+g‘ℂfld)
16 cnring 20819 . . . . . . . . . . . 12 fld ∈ Ring
17 ringcmn 20003 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
1816, 17mp1i 13 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ CMnd)
19 simpll 765 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼𝑉)
209adantr 481 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋:𝐼⟶ℕ0)
2120ffvelcdmda 7035 . . . . . . . . . . . 12 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
2221nn0cnd 12475 . . . . . . . . . . 11 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
238psrbagfsuppOLD 21323 . . . . . . . . . . . . . 14 ((𝑋𝐴𝐼𝑉) → 𝑋 finSupp 0)
2423ancoms 459 . . . . . . . . . . . . 13 ((𝐼𝑉𝑋𝐴) → 𝑋 finSupp 0)
2524adantr 481 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 finSupp 0)
2611, 25eqbrtrrd 5129 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
27 incom 4161 . . . . . . . . . . . . 13 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ({𝑥} ∩ (𝐼 ∖ {𝑥}))
28 disjdif 4431 . . . . . . . . . . . . 13 ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅
2927, 28eqtri 2764 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅
3029a1i 11 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅)
31 difsnid 4770 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝐼 ∖ {𝑥}) ∪ {𝑥}) = 𝐼)
3231eqcomd 2742 . . . . . . . . . . . 12 (𝑥𝐼𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3332ad2antrl 726 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3413, 14, 15, 18, 19, 22, 26, 30, 33gsumsplit2 19706 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
357, 12, 343eqtrd 2780 . . . . . . . . 9 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
36 difexg 5284 . . . . . . . . . . . . 13 (𝐼𝑉 → (𝐼 ∖ {𝑥}) ∈ V)
3736ad2antrr 724 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐼 ∖ {𝑥}) ∈ V)
38 nn0subm 20852 . . . . . . . . . . . . 13 0 ∈ (SubMnd‘ℂfld)
3938a1i 11 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℕ0 ∈ (SubMnd‘ℂfld))
40 eldifi 4086 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) → 𝑦𝐼)
41 ffvelcdm 7032 . . . . . . . . . . . . . 14 ((𝑋:𝐼⟶ℕ0𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
4220, 40, 41syl2an 596 . . . . . . . . . . . . 13 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑋𝑦) ∈ ℕ0)
4342fmpttd 7063 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)):(𝐼 ∖ {𝑥})⟶ℕ0)
4436mptexd 7174 . . . . . . . . . . . . . 14 (𝐼𝑉 → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
4544ad2antrr 724 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
46 funmpt 6539 . . . . . . . . . . . . . 14 Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
4746a1i 11 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
48 funmpt 6539 . . . . . . . . . . . . . 14 Fun (𝑦𝐼 ↦ (𝑋𝑦))
49 difss 4091 . . . . . . . . . . . . . . . 16 (𝐼 ∖ {𝑥}) ⊆ 𝐼
50 resmpt 5991 . . . . . . . . . . . . . . . 16 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) = (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
5149, 50ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) = (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
52 resss 5962 . . . . . . . . . . . . . . 15 ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
5351, 52eqsstrri 3979 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
54 mptexg 7171 . . . . . . . . . . . . . . 15 (𝐼𝑉 → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
5554ad2antrr 724 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
56 funsssuppss 8121 . . . . . . . . . . . . . 14 ((Fun (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
5748, 53, 55, 56mp3an12i 1465 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
58 fsuppsssupp 9321 . . . . . . . . . . . . 13 ((((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V ∧ Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∧ ((𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0 ∧ ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
5945, 47, 26, 57, 58syl22anc 837 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
6014, 18, 37, 39, 43, 59gsumsubmcl 19696 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0)
61 ringmnd 19974 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
6216, 61mp1i 13 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ Mnd)
63 simprl 769 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑥𝐼)
6420, 63ffvelcdmd 7036 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ0)
6564nn0cnd 12475 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℂ)
66 fveq2 6842 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋𝑦) = (𝑋𝑥))
6713, 66gsumsn 19731 . . . . . . . . . . . . 13 ((ℂfld ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑋𝑥) ∈ ℂ) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
6862, 63, 65, 67syl3anc 1371 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
69 simprr 771 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ≠ 0)
7069, 2sylib 217 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ¬ (𝑋𝑥) = 0)
71 elnn0 12415 . . . . . . . . . . . . . 14 ((𝑋𝑥) ∈ ℕ0 ↔ ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
7264, 71sylib 217 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
73 orel2 889 . . . . . . . . . . . . 13 (¬ (𝑋𝑥) = 0 → (((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0) → (𝑋𝑥) ∈ ℕ))
7470, 72, 73sylc 65 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ)
7568, 74eqeltrd 2838 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ)
76 nn0nnaddcl 12444 . . . . . . . . . . 11 (((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0 ∧ (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7760, 75, 76syl2anc 584 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
7877nnne0d 12203 . . . . . . . . 9 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ≠ 0)
7935, 78eqnetrd 3011 . . . . . . . 8 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) ≠ 0)
8079expr 457 . . . . . . 7 (((𝐼𝑉𝑋𝐴) ∧ 𝑥𝐼) → ((𝑋𝑥) ≠ 0 → (𝐻𝑋) ≠ 0))
812, 80biimtrrid 242 . . . . . 6 (((𝐼𝑉𝑋𝐴) ∧ 𝑥𝐼) → (¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
8281rexlimdva 3152 . . . . 5 ((𝐼𝑉𝑋𝐴) → (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
831, 82biimtrrid 242 . . . 4 ((𝐼𝑉𝑋𝐴) → (¬ ∀𝑥𝐼 (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
8483necon4bd 2963 . . 3 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 → ∀𝑥𝐼 (𝑋𝑥) = 0))
859ffnd 6669 . . . . 5 ((𝐼𝑉𝑋𝐴) → 𝑋 Fn 𝐼)
86 0nn0 12428 . . . . . 6 0 ∈ ℕ0
87 fnconstg 6730 . . . . . 6 (0 ∈ ℕ0 → (𝐼 × {0}) Fn 𝐼)
8886, 87mp1i 13 . . . . 5 ((𝐼𝑉𝑋𝐴) → (𝐼 × {0}) Fn 𝐼)
89 eqfnfv 6982 . . . . 5 ((𝑋 Fn 𝐼 ∧ (𝐼 × {0}) Fn 𝐼) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
9085, 88, 89syl2anc 584 . . . 4 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
91 c0ex 11149 . . . . . . 7 0 ∈ V
9291fvconst2 7153 . . . . . 6 (𝑥𝐼 → ((𝐼 × {0})‘𝑥) = 0)
9392eqeq2d 2747 . . . . 5 (𝑥𝐼 → ((𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
9493ralbiia 3094 . . . 4 (∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0)
9590, 94bitrdi 286 . . 3 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0))
9684, 95sylibrd 258 . 2 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 → 𝑋 = (𝐼 × {0})))
978psrbag0 21470 . . . . . 6 (𝐼𝑉 → (𝐼 × {0}) ∈ 𝐴)
9897adantr 481 . . . . 5 ((𝐼𝑉𝑋𝐴) → (𝐼 × {0}) ∈ 𝐴)
99 oveq2 7365 . . . . . 6 ( = (𝐼 × {0}) → (ℂfld Σg ) = (ℂfld Σg (𝐼 × {0})))
100 ovex 7390 . . . . . 6 (ℂfld Σg (𝐼 × {0})) ∈ V
10199, 4, 100fvmpt 6948 . . . . 5 ((𝐼 × {0}) ∈ 𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
10298, 101syl 17 . . . 4 ((𝐼𝑉𝑋𝐴) → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
103 fconstmpt 5694 . . . . . 6 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
104103oveq2i 7368 . . . . 5 (ℂfld Σg (𝐼 × {0})) = (ℂfld Σg (𝑥𝐼 ↦ 0))
10516, 61ax-mp 5 . . . . . . 7 fld ∈ Mnd
10614gsumz 18646 . . . . . . 7 ((ℂfld ∈ Mnd ∧ 𝐼𝑉) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
107105, 106mpan 688 . . . . . 6 (𝐼𝑉 → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
108107adantr 481 . . . . 5 ((𝐼𝑉𝑋𝐴) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
109104, 108eqtrid 2788 . . . 4 ((𝐼𝑉𝑋𝐴) → (ℂfld Σg (𝐼 × {0})) = 0)
110102, 109eqtrd 2776 . . 3 ((𝐼𝑉𝑋𝐴) → (𝐻‘(𝐼 × {0})) = 0)
111 fveqeq2 6851 . . 3 (𝑋 = (𝐼 × {0}) → ((𝐻𝑋) = 0 ↔ (𝐻‘(𝐼 × {0})) = 0))
112110, 111syl5ibrcom 246 . 2 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) → (𝐻𝑋) = 0))
11396, 112impbid 211 1 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  {csn 4586   class class class wbr 5105  cmpt 5188   × cxp 5631  ccnv 5632  cres 5635  cima 5636  Fun wfun 6490   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357   supp csupp 8092  m cmap 8765  Fincfn 8883   finSupp cfsupp 9305  cc 11049  0cc0 11051   + caddc 11054  cn 12153  0cn0 12413   Σg cgsu 17322  Mndcmnd 18556  SubMndcsubmnd 18600  CMndccmn 19562  Ringcrg 19964  fldccnfld 20796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-gsum 17324  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-cnfld 20797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator