Step | Hyp | Ref
| Expression |
1 | | domnnzr 20479 |
. . 3
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
2 | | ply1domn.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
3 | 2 | ply1nz 25191 |
. . 3
⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) |
4 | 1, 3 | syl 17 |
. 2
⊢ (𝑅 ∈ Domn → 𝑃 ∈ NzRing) |
5 | | neanior 3036 |
. . . . 5
⊢ ((𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃)) ↔ ¬ (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃))) |
6 | | eqid 2738 |
. . . . . . . . 9
⊢ (
deg1 ‘𝑅) =
( deg1 ‘𝑅) |
7 | | eqid 2738 |
. . . . . . . . 9
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
8 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘𝑃) |
9 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑃) = (.r‘𝑃) |
10 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝑃) = (0g‘𝑃) |
11 | | domnring 20480 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
12 | 11 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑅 ∈ Ring) |
13 | | simplrl 773 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑥 ∈ (Base‘𝑃)) |
14 | | simprl 767 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑥 ≠ (0g‘𝑃)) |
15 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑅 ∈ Domn) |
16 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(coe1‘𝑥) = (coe1‘𝑥) |
17 | 6, 2, 10, 8, 7, 16 | deg1ldgdomn 25164 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g‘𝑃)) → ((coe1‘𝑥)‘(( deg1
‘𝑅)‘𝑥)) ∈ (RLReg‘𝑅)) |
18 | 15, 13, 14, 17 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((coe1‘𝑥)‘(( deg1
‘𝑅)‘𝑥)) ∈ (RLReg‘𝑅)) |
19 | | simplrr 774 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑦 ∈ (Base‘𝑃)) |
20 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑦 ≠ (0g‘𝑃)) |
21 | 6, 2, 7, 8, 9, 10,
12, 13, 14, 18, 19, 20 | deg1mul2 25184 |
. . . . . . . 8
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → (( deg1 ‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) = ((( deg1 ‘𝑅)‘𝑥) + (( deg1 ‘𝑅)‘𝑦))) |
22 | 6, 2, 10, 8 | deg1nn0cl 25158 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g‘𝑃)) → (( deg1 ‘𝑅)‘𝑥) ∈
ℕ0) |
23 | 12, 13, 14, 22 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → (( deg1 ‘𝑅)‘𝑥) ∈
ℕ0) |
24 | 6, 2, 10, 8 | deg1nn0cl 25158 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃)) → (( deg1 ‘𝑅)‘𝑦) ∈
ℕ0) |
25 | 12, 19, 20, 24 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → (( deg1 ‘𝑅)‘𝑦) ∈
ℕ0) |
26 | 23, 25 | nn0addcld 12227 |
. . . . . . . 8
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((( deg1 ‘𝑅)‘𝑥) + (( deg1 ‘𝑅)‘𝑦)) ∈
ℕ0) |
27 | 21, 26 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → (( deg1 ‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0) |
28 | 2 | ply1ring 21329 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
29 | 11, 28 | syl 17 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Ring) |
30 | 29 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑃 ∈ Ring) |
31 | 8, 9 | ringcl 19715 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃)) → (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) |
32 | 30, 13, 19, 31 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) |
33 | 6, 2, 10, 8 | deg1nn0clb 25160 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) → ((𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ↔ (( deg1 ‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0)) |
34 | 12, 32, 33 | syl2anc 583 |
. . . . . . 7
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ↔ (( deg1 ‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0)) |
35 | 27, 34 | mpbird 256 |
. . . . . 6
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃)) |
36 | 35 | ex 412 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → ((𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃)) → (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃))) |
37 | 5, 36 | syl5bir 242 |
. . . 4
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (¬ (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃)) → (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃))) |
38 | 37 | necon4bd 2962 |
. . 3
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → ((𝑥(.r‘𝑃)𝑦) = (0g‘𝑃) → (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃)))) |
39 | 38 | ralrimivva 3114 |
. 2
⊢ (𝑅 ∈ Domn →
∀𝑥 ∈
(Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)((𝑥(.r‘𝑃)𝑦) = (0g‘𝑃) → (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃)))) |
40 | 8, 9, 10 | isdomn 20478 |
. 2
⊢ (𝑃 ∈ Domn ↔ (𝑃 ∈ NzRing ∧
∀𝑥 ∈
(Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)((𝑥(.r‘𝑃)𝑦) = (0g‘𝑃) → (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃))))) |
41 | 4, 39, 40 | sylanbrc 582 |
1
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) |