| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | domnnzr 20707 | . . 3
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | 
| 2 |  | ply1domn.p | . . . 4
⊢ 𝑃 = (Poly1‘𝑅) | 
| 3 | 2 | ply1nz 26162 | . . 3
⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) | 
| 4 | 1, 3 | syl 17 | . 2
⊢ (𝑅 ∈ Domn → 𝑃 ∈ NzRing) | 
| 5 |  | neanior 3034 | . . . . 5
⊢ ((𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃)) ↔ ¬ (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃))) | 
| 6 |  | eqid 2736 | . . . . . . . . 9
⊢
(deg1‘𝑅) = (deg1‘𝑅) | 
| 7 |  | eqid 2736 | . . . . . . . . 9
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) | 
| 8 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘𝑃) | 
| 9 |  | eqid 2736 | . . . . . . . . 9
⊢
(.r‘𝑃) = (.r‘𝑃) | 
| 10 |  | eqid 2736 | . . . . . . . . 9
⊢
(0g‘𝑃) = (0g‘𝑃) | 
| 11 |  | domnring 20708 | . . . . . . . . . 10
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | 
| 12 | 11 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑅 ∈ Ring) | 
| 13 |  | simplrl 776 | . . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑥 ∈ (Base‘𝑃)) | 
| 14 |  | simprl 770 | . . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑥 ≠ (0g‘𝑃)) | 
| 15 |  | simpll 766 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑅 ∈ Domn) | 
| 16 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(coe1‘𝑥) = (coe1‘𝑥) | 
| 17 | 6, 2, 10, 8, 7, 16 | deg1ldgdomn 26134 | . . . . . . . . . 10
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g‘𝑃)) → ((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥)) ∈ (RLReg‘𝑅)) | 
| 18 | 15, 13, 14, 17 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥)) ∈ (RLReg‘𝑅)) | 
| 19 |  | simplrr 777 | . . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑦 ∈ (Base‘𝑃)) | 
| 20 |  | simprr 772 | . . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑦 ≠ (0g‘𝑃)) | 
| 21 | 6, 2, 7, 8, 9, 10,
12, 13, 14, 18, 19, 20 | deg1mul2 26154 | . . . . . . . 8
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) = (((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦))) | 
| 22 | 6, 2, 10, 8 | deg1nn0cl 26128 | . . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g‘𝑃)) → ((deg1‘𝑅)‘𝑥) ∈
ℕ0) | 
| 23 | 12, 13, 14, 22 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((deg1‘𝑅)‘𝑥) ∈
ℕ0) | 
| 24 | 6, 2, 10, 8 | deg1nn0cl 26128 | . . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃)) → ((deg1‘𝑅)‘𝑦) ∈
ℕ0) | 
| 25 | 12, 19, 20, 24 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((deg1‘𝑅)‘𝑦) ∈
ℕ0) | 
| 26 | 23, 25 | nn0addcld 12593 | . . . . . . . 8
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → (((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦)) ∈
ℕ0) | 
| 27 | 21, 26 | eqeltrd 2840 | . . . . . . 7
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0) | 
| 28 | 2 | ply1ring 22250 | . . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | 
| 29 | 11, 28 | syl 17 | . . . . . . . . . 10
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Ring) | 
| 30 | 29 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑃 ∈ Ring) | 
| 31 | 8, 9 | ringcl 20248 | . . . . . . . . 9
⊢ ((𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃)) → (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) | 
| 32 | 30, 13, 19, 31 | syl3anc 1372 | . . . . . . . 8
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) | 
| 33 | 6, 2, 10, 8 | deg1nn0clb 26130 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) → ((𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ↔ ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0)) | 
| 34 | 12, 32, 33 | syl2anc 584 | . . . . . . 7
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ↔ ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0)) | 
| 35 | 27, 34 | mpbird 257 | . . . . . 6
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃)) | 
| 36 | 35 | ex 412 | . . . . 5
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → ((𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃)) → (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃))) | 
| 37 | 5, 36 | biimtrrid 243 | . . . 4
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (¬ (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃)) → (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃))) | 
| 38 | 37 | necon4bd 2959 | . . 3
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → ((𝑥(.r‘𝑃)𝑦) = (0g‘𝑃) → (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃)))) | 
| 39 | 38 | ralrimivva 3201 | . 2
⊢ (𝑅 ∈ Domn →
∀𝑥 ∈
(Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)((𝑥(.r‘𝑃)𝑦) = (0g‘𝑃) → (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃)))) | 
| 40 | 8, 9, 10 | isdomn 20706 | . 2
⊢ (𝑃 ∈ Domn ↔ (𝑃 ∈ NzRing ∧
∀𝑥 ∈
(Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)((𝑥(.r‘𝑃)𝑦) = (0g‘𝑃) → (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃))))) | 
| 41 | 4, 39, 40 | sylanbrc 583 | 1
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) |