| Step | Hyp | Ref
| Expression |
| 1 | | domnnzr 20671 |
. . 3
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| 2 | | ply1domn.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
| 3 | 2 | ply1nz 26084 |
. . 3
⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) |
| 4 | 1, 3 | syl 17 |
. 2
⊢ (𝑅 ∈ Domn → 𝑃 ∈ NzRing) |
| 5 | | neanior 3026 |
. . . . 5
⊢ ((𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃)) ↔ ¬ (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃))) |
| 6 | | eqid 2736 |
. . . . . . . . 9
⊢
(deg1‘𝑅) = (deg1‘𝑅) |
| 7 | | eqid 2736 |
. . . . . . . . 9
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
| 8 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 9 | | eqid 2736 |
. . . . . . . . 9
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 10 | | eqid 2736 |
. . . . . . . . 9
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 11 | | domnring 20672 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| 12 | 11 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑅 ∈ Ring) |
| 13 | | simplrl 776 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑥 ∈ (Base‘𝑃)) |
| 14 | | simprl 770 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑥 ≠ (0g‘𝑃)) |
| 15 | | simpll 766 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑅 ∈ Domn) |
| 16 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(coe1‘𝑥) = (coe1‘𝑥) |
| 17 | 6, 2, 10, 8, 7, 16 | deg1ldgdomn 26056 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g‘𝑃)) → ((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥)) ∈ (RLReg‘𝑅)) |
| 18 | 15, 13, 14, 17 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥)) ∈ (RLReg‘𝑅)) |
| 19 | | simplrr 777 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑦 ∈ (Base‘𝑃)) |
| 20 | | simprr 772 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑦 ≠ (0g‘𝑃)) |
| 21 | 6, 2, 7, 8, 9, 10,
12, 13, 14, 18, 19, 20 | deg1mul2 26076 |
. . . . . . . 8
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) = (((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦))) |
| 22 | 6, 2, 10, 8 | deg1nn0cl 26050 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g‘𝑃)) → ((deg1‘𝑅)‘𝑥) ∈
ℕ0) |
| 23 | 12, 13, 14, 22 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((deg1‘𝑅)‘𝑥) ∈
ℕ0) |
| 24 | 6, 2, 10, 8 | deg1nn0cl 26050 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃)) → ((deg1‘𝑅)‘𝑦) ∈
ℕ0) |
| 25 | 12, 19, 20, 24 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((deg1‘𝑅)‘𝑦) ∈
ℕ0) |
| 26 | 23, 25 | nn0addcld 12571 |
. . . . . . . 8
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → (((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦)) ∈
ℕ0) |
| 27 | 21, 26 | eqeltrd 2835 |
. . . . . . 7
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0) |
| 28 | 2 | ply1ring 22188 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 29 | 11, 28 | syl 17 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Ring) |
| 30 | 29 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → 𝑃 ∈ Ring) |
| 31 | 8, 9 | ringcl 20215 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃)) → (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) |
| 32 | 30, 13, 19, 31 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) |
| 33 | 6, 2, 10, 8 | deg1nn0clb 26052 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) → ((𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ↔ ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0)) |
| 34 | 12, 32, 33 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → ((𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ↔ ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0)) |
| 35 | 27, 34 | mpbird 257 |
. . . . . 6
⊢ (((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) ∧ (𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃))) → (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃)) |
| 36 | 35 | ex 412 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → ((𝑥 ≠ (0g‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃)) → (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃))) |
| 37 | 5, 36 | biimtrrid 243 |
. . . 4
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (¬ (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃)) → (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃))) |
| 38 | 37 | necon4bd 2953 |
. . 3
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → ((𝑥(.r‘𝑃)𝑦) = (0g‘𝑃) → (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃)))) |
| 39 | 38 | ralrimivva 3188 |
. 2
⊢ (𝑅 ∈ Domn →
∀𝑥 ∈
(Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)((𝑥(.r‘𝑃)𝑦) = (0g‘𝑃) → (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃)))) |
| 40 | 8, 9, 10 | isdomn 20670 |
. 2
⊢ (𝑃 ∈ Domn ↔ (𝑃 ∈ NzRing ∧
∀𝑥 ∈
(Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)((𝑥(.r‘𝑃)𝑦) = (0g‘𝑃) → (𝑥 = (0g‘𝑃) ∨ 𝑦 = (0g‘𝑃))))) |
| 41 | 4, 39, 40 | sylanbrc 583 |
1
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) |