Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2f1olem Structured version   Visualization version   GIF version

Theorem pw2f1olem 8655
 Description: Lemma for pw2f1o 8656. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypotheses
Ref Expression
pw2f1o.1 (𝜑𝐴𝑉)
pw2f1o.2 (𝜑𝐵𝑊)
pw2f1o.3 (𝜑𝐶𝑊)
pw2f1o.4 (𝜑𝐵𝐶)
Assertion
Ref Expression
pw2f1olem (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶}))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑧)   𝐺(𝑧)   𝑉(𝑧)   𝑊(𝑧)

Proof of Theorem pw2f1olem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pw2f1o.3 . . . . . . . . . 10 (𝜑𝐶𝑊)
2 prid2g 4657 . . . . . . . . . 10 (𝐶𝑊𝐶 ∈ {𝐵, 𝐶})
31, 2syl 17 . . . . . . . . 9 (𝜑𝐶 ∈ {𝐵, 𝐶})
4 pw2f1o.2 . . . . . . . . . 10 (𝜑𝐵𝑊)
5 prid1g 4656 . . . . . . . . . 10 (𝐵𝑊𝐵 ∈ {𝐵, 𝐶})
64, 5syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ {𝐵, 𝐶})
73, 6ifcld 4469 . . . . . . . 8 (𝜑 → if(𝑦𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
87adantr 484 . . . . . . 7 ((𝜑𝑦𝐴) → if(𝑦𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
98fmpttd 6876 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶})
109adantr 484 . . . . 5 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶})
11 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
1211feq1d 6488 . . . . 5 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ↔ (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶}))
1310, 12mpbird 260 . . . 4 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝐺:𝐴⟶{𝐵, 𝐶})
14 iftrue 4429 . . . . . . . . 9 (𝑥𝑆 → if(𝑥𝑆, 𝐶, 𝐵) = 𝐶)
15 pw2f1o.4 . . . . . . . . . . . 12 (𝜑𝐵𝐶)
1615ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝐵𝐶)
17 iffalse 4432 . . . . . . . . . . . 12 𝑥𝑆 → if(𝑥𝑆, 𝐶, 𝐵) = 𝐵)
1817neeq1d 3010 . . . . . . . . . . 11 𝑥𝑆 → (if(𝑥𝑆, 𝐶, 𝐵) ≠ 𝐶𝐵𝐶))
1916, 18syl5ibrcom 250 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (¬ 𝑥𝑆 → if(𝑥𝑆, 𝐶, 𝐵) ≠ 𝐶))
2019necon4bd 2971 . . . . . . . . 9 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (if(𝑥𝑆, 𝐶, 𝐵) = 𝐶𝑥𝑆))
2114, 20impbid2 229 . . . . . . . 8 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝑥𝑆 ↔ if(𝑥𝑆, 𝐶, 𝐵) = 𝐶))
22 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
2322fveq1d 6665 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝐺𝑥) = ((𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))‘𝑥))
24 id 22 . . . . . . . . . . 11 (𝑥𝐴𝑥𝐴)
253, 6ifcld 4469 . . . . . . . . . . . 12 (𝜑 → if(𝑥𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
2625adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → if(𝑥𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
27 eleq1w 2834 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦𝑆𝑥𝑆))
2827ifbid 4446 . . . . . . . . . . . 12 (𝑦 = 𝑥 → if(𝑦𝑆, 𝐶, 𝐵) = if(𝑥𝑆, 𝐶, 𝐵))
29 eqid 2758 . . . . . . . . . . . 12 (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))
3028, 29fvmptg 6762 . . . . . . . . . . 11 ((𝑥𝐴 ∧ if(𝑥𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) → ((𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥𝑆, 𝐶, 𝐵))
3124, 26, 30syl2anr 599 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → ((𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥𝑆, 𝐶, 𝐵))
3223, 31eqtrd 2793 . . . . . . . . 9 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝐺𝑥) = if(𝑥𝑆, 𝐶, 𝐵))
3332eqeq1d 2760 . . . . . . . 8 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → ((𝐺𝑥) = 𝐶 ↔ if(𝑥𝑆, 𝐶, 𝐵) = 𝐶))
3421, 33bitr4d 285 . . . . . . 7 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝑥𝑆 ↔ (𝐺𝑥) = 𝐶))
3534pm5.32da 582 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → ((𝑥𝐴𝑥𝑆) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 𝐶)))
36 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝑆𝐴)
3736sseld 3893 . . . . . . 7 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥𝑆𝑥𝐴))
3837pm4.71rd 566 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥𝑆 ↔ (𝑥𝐴𝑥𝑆)))
39 ffn 6503 . . . . . . . 8 (𝐺:𝐴⟶{𝐵, 𝐶} → 𝐺 Fn 𝐴)
4013, 39syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝐺 Fn 𝐴)
41 fniniseg 6826 . . . . . . 7 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ {𝐶}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 𝐶)))
4240, 41syl 17 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ (𝐺 “ {𝐶}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 𝐶)))
4335, 38, 423bitr4d 314 . . . . 5 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥𝑆𝑥 ∈ (𝐺 “ {𝐶})))
4443eqrdv 2756 . . . 4 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝑆 = (𝐺 “ {𝐶}))
4513, 44jca 515 . . 3 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶})))
46 simprr 772 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝑆 = (𝐺 “ {𝐶}))
47 cnvimass 5926 . . . . . 6 (𝐺 “ {𝐶}) ⊆ dom 𝐺
48 fdm 6511 . . . . . . 7 (𝐺:𝐴⟶{𝐵, 𝐶} → dom 𝐺 = 𝐴)
4948ad2antrl 727 . . . . . 6 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → dom 𝐺 = 𝐴)
5047, 49sseqtrid 3946 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝐺 “ {𝐶}) ⊆ 𝐴)
5146, 50eqsstrd 3932 . . . 4 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝑆𝐴)
5239ad2antrl 727 . . . . . 6 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺 Fn 𝐴)
53 dffn5 6717 . . . . . 6 (𝐺 Fn 𝐴𝐺 = (𝑦𝐴 ↦ (𝐺𝑦)))
5452, 53sylib 221 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺 = (𝑦𝐴 ↦ (𝐺𝑦)))
55 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → 𝑆 = (𝐺 “ {𝐶}))
5655eleq2d 2837 . . . . . . . . . 10 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝑦𝑆𝑦 ∈ (𝐺 “ {𝐶})))
57 fniniseg 6826 . . . . . . . . . . . 12 (𝐺 Fn 𝐴 → (𝑦 ∈ (𝐺 “ {𝐶}) ↔ (𝑦𝐴 ∧ (𝐺𝑦) = 𝐶)))
5852, 57syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝑦 ∈ (𝐺 “ {𝐶}) ↔ (𝑦𝐴 ∧ (𝐺𝑦) = 𝐶)))
5958baibd 543 . . . . . . . . . 10 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝑦 ∈ (𝐺 “ {𝐶}) ↔ (𝐺𝑦) = 𝐶))
6056, 59bitrd 282 . . . . . . . . 9 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝑦𝑆 ↔ (𝐺𝑦) = 𝐶))
6160biimpa 480 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ 𝑦𝑆) → (𝐺𝑦) = 𝐶)
62 iftrue 4429 . . . . . . . . 9 (𝑦𝑆 → if(𝑦𝑆, 𝐶, 𝐵) = 𝐶)
6362adantl 485 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ 𝑦𝑆) → if(𝑦𝑆, 𝐶, 𝐵) = 𝐶)
6461, 63eqtr4d 2796 . . . . . . 7 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ 𝑦𝑆) → (𝐺𝑦) = if(𝑦𝑆, 𝐶, 𝐵))
65 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺:𝐴⟶{𝐵, 𝐶})
6665ffvelrnda 6848 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝐺𝑦) ∈ {𝐵, 𝐶})
67 fvex 6676 . . . . . . . . . . . . . 14 (𝐺𝑦) ∈ V
6867elpr 4548 . . . . . . . . . . . . 13 ((𝐺𝑦) ∈ {𝐵, 𝐶} ↔ ((𝐺𝑦) = 𝐵 ∨ (𝐺𝑦) = 𝐶))
6966, 68sylib 221 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → ((𝐺𝑦) = 𝐵 ∨ (𝐺𝑦) = 𝐶))
7069ord 861 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (¬ (𝐺𝑦) = 𝐵 → (𝐺𝑦) = 𝐶))
7170, 60sylibrd 262 . . . . . . . . . 10 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (¬ (𝐺𝑦) = 𝐵𝑦𝑆))
7271con1d 147 . . . . . . . . 9 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (¬ 𝑦𝑆 → (𝐺𝑦) = 𝐵))
7372imp 410 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → (𝐺𝑦) = 𝐵)
74 iffalse 4432 . . . . . . . . 9 𝑦𝑆 → if(𝑦𝑆, 𝐶, 𝐵) = 𝐵)
7574adantl 485 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → if(𝑦𝑆, 𝐶, 𝐵) = 𝐵)
7673, 75eqtr4d 2796 . . . . . . 7 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → (𝐺𝑦) = if(𝑦𝑆, 𝐶, 𝐵))
7764, 76pm2.61dan 812 . . . . . 6 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝐺𝑦) = if(𝑦𝑆, 𝐶, 𝐵))
7877mpteq2dva 5131 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝑦𝐴 ↦ (𝐺𝑦)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
7954, 78eqtrd 2793 . . . 4 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
8051, 79jca 515 . . 3 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))))
8145, 80impbida 800 . 2 (𝜑 → ((𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))))
82 pw2f1o.1 . . . 4 (𝜑𝐴𝑉)
83 elpw2g 5218 . . . 4 (𝐴𝑉 → (𝑆 ∈ 𝒫 𝐴𝑆𝐴))
8482, 83syl 17 . . 3 (𝜑 → (𝑆 ∈ 𝒫 𝐴𝑆𝐴))
85 eleq1w 2834 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑆𝑦𝑆))
8685ifbid 4446 . . . . . 6 (𝑧 = 𝑦 → if(𝑧𝑆, 𝐶, 𝐵) = if(𝑦𝑆, 𝐶, 𝐵))
8786cbvmptv 5139 . . . . 5 (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))
8887a1i 11 . . . 4 (𝜑 → (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
8988eqeq2d 2769 . . 3 (𝜑 → (𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵)) ↔ 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))))
9084, 89anbi12d 633 . 2 (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))))
91 prex 5305 . . . 4 {𝐵, 𝐶} ∈ V
92 elmapg 8435 . . . 4 (({𝐵, 𝐶} ∈ V ∧ 𝐴𝑉) → (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶}))
9391, 82, 92sylancr 590 . . 3 (𝜑 → (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶}))
9493anbi1d 632 . 2 (𝜑 → ((𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶})) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))))
9581, 90, 943bitr4d 314 1 (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶}))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  Vcvv 3409   ⊆ wss 3860  ifcif 4423  𝒫 cpw 4497  {csn 4525  {cpr 4527   ↦ cmpt 5116  ◡ccnv 5527  dom cdm 5528   “ cima 5531   Fn wfn 6335  ⟶wf 6336  ‘cfv 6340  (class class class)co 7156   ↑m cmap 8422 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8424 This theorem is referenced by:  pw2f1o  8656  sqff1o  25879
 Copyright terms: Public domain W3C validator