| Step | Hyp | Ref
| Expression |
| 1 | | pw2f1o.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| 2 | | prid2g 4761 |
. . . . . . . . . 10
⊢ (𝐶 ∈ 𝑊 → 𝐶 ∈ {𝐵, 𝐶}) |
| 3 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ {𝐵, 𝐶}) |
| 4 | | pw2f1o.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 5 | | prid1g 4760 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐵, 𝐶}) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ {𝐵, 𝐶}) |
| 7 | 3, 6 | ifcld 4572 |
. . . . . . . 8
⊢ (𝜑 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
| 8 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
| 9 | 8 | fmpttd 7135 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶}) |
| 10 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶}) |
| 11 | | simprr 773 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
| 12 | 11 | feq1d 6720 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ↔ (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶})) |
| 13 | 10, 12 | mpbird 257 |
. . . 4
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝐺:𝐴⟶{𝐵, 𝐶}) |
| 14 | | iftrue 4531 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑆 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶) |
| 15 | | pw2f1o.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| 16 | 15 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ 𝐶) |
| 17 | | iffalse 4534 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 ∈ 𝑆 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐵) |
| 18 | 17 | neeq1d 3000 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝑆 → (if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| 19 | 16, 18 | syl5ibrcom 247 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ 𝑆 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ≠ 𝐶)) |
| 20 | 19 | necon4bd 2960 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶 → 𝑥 ∈ 𝑆)) |
| 21 | 14, 20 | impbid2 226 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝑆 ↔ if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶)) |
| 22 | | simplrr 778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
| 23 | 22 | fveq1d 6908 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = ((𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))‘𝑥)) |
| 24 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) |
| 25 | 3, 6 | ifcld 4572 |
. . . . . . . . . . . 12
⊢ (𝜑 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
| 26 | 25 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
| 27 | | eleq1w 2824 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑆 ↔ 𝑥 ∈ 𝑆)) |
| 28 | 27 | ifbid 4549 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
| 29 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
| 30 | 28, 29 | fvmptg 7014 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) → ((𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
| 31 | 24, 26, 30 | syl2anr 597 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
| 32 | 23, 31 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
| 33 | 32 | eqeq1d 2739 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) = 𝐶 ↔ if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶)) |
| 34 | 21, 33 | bitr4d 282 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝑆 ↔ (𝐺‘𝑥) = 𝐶)) |
| 35 | 34 | pm5.32da 579 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑆) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 𝐶))) |
| 36 | | simprl 771 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝑆 ⊆ 𝐴) |
| 37 | 36 | sseld 3982 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐴)) |
| 38 | 37 | pm4.71rd 562 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑆))) |
| 39 | | ffn 6736 |
. . . . . . . 8
⊢ (𝐺:𝐴⟶{𝐵, 𝐶} → 𝐺 Fn 𝐴) |
| 40 | 13, 39 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝐺 Fn 𝐴) |
| 41 | | fniniseg 7080 |
. . . . . . 7
⊢ (𝐺 Fn 𝐴 → (𝑥 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 𝐶))) |
| 42 | 40, 41 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 𝐶))) |
| 43 | 35, 38, 42 | 3bitr4d 311 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐺 “ {𝐶}))) |
| 44 | 43 | eqrdv 2735 |
. . . 4
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝑆 = (◡𝐺 “ {𝐶})) |
| 45 | 13, 44 | jca 511 |
. . 3
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) |
| 46 | | simprr 773 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝑆 = (◡𝐺 “ {𝐶})) |
| 47 | | cnvimass 6100 |
. . . . . 6
⊢ (◡𝐺 “ {𝐶}) ⊆ dom 𝐺 |
| 48 | | fdm 6745 |
. . . . . . 7
⊢ (𝐺:𝐴⟶{𝐵, 𝐶} → dom 𝐺 = 𝐴) |
| 49 | 48 | ad2antrl 728 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → dom 𝐺 = 𝐴) |
| 50 | 47, 49 | sseqtrid 4026 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (◡𝐺 “ {𝐶}) ⊆ 𝐴) |
| 51 | 46, 50 | eqsstrd 4018 |
. . . 4
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝑆 ⊆ 𝐴) |
| 52 | 39 | ad2antrl 728 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺 Fn 𝐴) |
| 53 | | dffn5 6967 |
. . . . . 6
⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑦 ∈ 𝐴 ↦ (𝐺‘𝑦))) |
| 54 | 52, 53 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺 = (𝑦 ∈ 𝐴 ↦ (𝐺‘𝑦))) |
| 55 | | simplrr 778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → 𝑆 = (◡𝐺 “ {𝐶})) |
| 56 | 55 | eleq2d 2827 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ 𝑆 ↔ 𝑦 ∈ (◡𝐺 “ {𝐶}))) |
| 57 | | fniniseg 7080 |
. . . . . . . . . . . 12
⊢ (𝐺 Fn 𝐴 → (𝑦 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑦 ∈ 𝐴 ∧ (𝐺‘𝑦) = 𝐶))) |
| 58 | 52, 57 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (𝑦 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑦 ∈ 𝐴 ∧ (𝐺‘𝑦) = 𝐶))) |
| 59 | 58 | baibd 539 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ (◡𝐺 “ {𝐶}) ↔ (𝐺‘𝑦) = 𝐶)) |
| 60 | 56, 59 | bitrd 279 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ 𝑆 ↔ (𝐺‘𝑦) = 𝐶)) |
| 61 | 60 | biimpa 476 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = 𝐶) |
| 62 | | iftrue 4531 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑆 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐶) |
| 63 | 62 | adantl 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐶) |
| 64 | 61, 63 | eqtr4d 2780 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
| 65 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺:𝐴⟶{𝐵, 𝐶}) |
| 66 | 65 | ffvelcdmda 7104 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝐺‘𝑦) ∈ {𝐵, 𝐶}) |
| 67 | | fvex 6919 |
. . . . . . . . . . . . . 14
⊢ (𝐺‘𝑦) ∈ V |
| 68 | 67 | elpr 4650 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑦) ∈ {𝐵, 𝐶} ↔ ((𝐺‘𝑦) = 𝐵 ∨ (𝐺‘𝑦) = 𝐶)) |
| 69 | 66, 68 | sylib 218 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → ((𝐺‘𝑦) = 𝐵 ∨ (𝐺‘𝑦) = 𝐶)) |
| 70 | 69 | ord 865 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (¬ (𝐺‘𝑦) = 𝐵 → (𝐺‘𝑦) = 𝐶)) |
| 71 | 70, 60 | sylibrd 259 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (¬ (𝐺‘𝑦) = 𝐵 → 𝑦 ∈ 𝑆)) |
| 72 | 71 | con1d 145 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑦 ∈ 𝑆 → (𝐺‘𝑦) = 𝐵)) |
| 73 | 72 | imp 406 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = 𝐵) |
| 74 | | iffalse 4534 |
. . . . . . . . 9
⊢ (¬
𝑦 ∈ 𝑆 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐵) |
| 75 | 74 | adantl 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐵) |
| 76 | 73, 75 | eqtr4d 2780 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
| 77 | 64, 76 | pm2.61dan 813 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝐺‘𝑦) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
| 78 | 77 | mpteq2dva 5242 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (𝑦 ∈ 𝐴 ↦ (𝐺‘𝑦)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
| 79 | 54, 78 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
| 80 | 51, 79 | jca 511 |
. . 3
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) |
| 81 | 45, 80 | impbida 801 |
. 2
⊢ (𝜑 → ((𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶})))) |
| 82 | | pw2f1o.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 83 | | elpw2g 5333 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑆 ∈ 𝒫 𝐴 ↔ 𝑆 ⊆ 𝐴)) |
| 84 | 82, 83 | syl 17 |
. . 3
⊢ (𝜑 → (𝑆 ∈ 𝒫 𝐴 ↔ 𝑆 ⊆ 𝐴)) |
| 85 | | eleq1w 2824 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) |
| 86 | 85 | ifbid 4549 |
. . . . . 6
⊢ (𝑧 = 𝑦 → if(𝑧 ∈ 𝑆, 𝐶, 𝐵) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
| 87 | 86 | cbvmptv 5255 |
. . . . 5
⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
| 88 | 87 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
| 89 | 88 | eqeq2d 2748 |
. . 3
⊢ (𝜑 → (𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵)) ↔ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) |
| 90 | 84, 89 | anbi12d 632 |
. 2
⊢ (𝜑 → ((𝑆 ∈ 𝒫 𝐴 ∧ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))))) |
| 91 | | prex 5437 |
. . . 4
⊢ {𝐵, 𝐶} ∈ V |
| 92 | | elmapg 8879 |
. . . 4
⊢ (({𝐵, 𝐶} ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶})) |
| 93 | 91, 82, 92 | sylancr 587 |
. . 3
⊢ (𝜑 → (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶})) |
| 94 | 93 | anbi1d 631 |
. 2
⊢ (𝜑 → ((𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑆 = (◡𝐺 “ {𝐶})) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶})))) |
| 95 | 81, 90, 94 | 3bitr4d 311 |
1
⊢ (𝜑 → ((𝑆 ∈ 𝒫 𝐴 ∧ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑆 = (◡𝐺 “ {𝐶})))) |