MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2f1olem Structured version   Visualization version   GIF version

Theorem pw2f1olem 9142
Description: Lemma for pw2f1o 9143. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypotheses
Ref Expression
pw2f1o.1 (𝜑𝐴𝑉)
pw2f1o.2 (𝜑𝐵𝑊)
pw2f1o.3 (𝜑𝐶𝑊)
pw2f1o.4 (𝜑𝐵𝐶)
Assertion
Ref Expression
pw2f1olem (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶}))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑧)   𝐺(𝑧)   𝑉(𝑧)   𝑊(𝑧)

Proof of Theorem pw2f1olem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pw2f1o.3 . . . . . . . . . 10 (𝜑𝐶𝑊)
2 prid2g 4786 . . . . . . . . . 10 (𝐶𝑊𝐶 ∈ {𝐵, 𝐶})
31, 2syl 17 . . . . . . . . 9 (𝜑𝐶 ∈ {𝐵, 𝐶})
4 pw2f1o.2 . . . . . . . . . 10 (𝜑𝐵𝑊)
5 prid1g 4785 . . . . . . . . . 10 (𝐵𝑊𝐵 ∈ {𝐵, 𝐶})
64, 5syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ {𝐵, 𝐶})
73, 6ifcld 4594 . . . . . . . 8 (𝜑 → if(𝑦𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
87adantr 480 . . . . . . 7 ((𝜑𝑦𝐴) → if(𝑦𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
98fmpttd 7149 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶})
109adantr 480 . . . . 5 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶})
11 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
1211feq1d 6732 . . . . 5 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ↔ (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶}))
1310, 12mpbird 257 . . . 4 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝐺:𝐴⟶{𝐵, 𝐶})
14 iftrue 4554 . . . . . . . . 9 (𝑥𝑆 → if(𝑥𝑆, 𝐶, 𝐵) = 𝐶)
15 pw2f1o.4 . . . . . . . . . . . 12 (𝜑𝐵𝐶)
1615ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝐵𝐶)
17 iffalse 4557 . . . . . . . . . . . 12 𝑥𝑆 → if(𝑥𝑆, 𝐶, 𝐵) = 𝐵)
1817neeq1d 3006 . . . . . . . . . . 11 𝑥𝑆 → (if(𝑥𝑆, 𝐶, 𝐵) ≠ 𝐶𝐵𝐶))
1916, 18syl5ibrcom 247 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (¬ 𝑥𝑆 → if(𝑥𝑆, 𝐶, 𝐵) ≠ 𝐶))
2019necon4bd 2966 . . . . . . . . 9 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (if(𝑥𝑆, 𝐶, 𝐵) = 𝐶𝑥𝑆))
2114, 20impbid2 226 . . . . . . . 8 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝑥𝑆 ↔ if(𝑥𝑆, 𝐶, 𝐵) = 𝐶))
22 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
2322fveq1d 6922 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝐺𝑥) = ((𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))‘𝑥))
24 id 22 . . . . . . . . . . 11 (𝑥𝐴𝑥𝐴)
253, 6ifcld 4594 . . . . . . . . . . . 12 (𝜑 → if(𝑥𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
2625adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → if(𝑥𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
27 eleq1w 2827 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦𝑆𝑥𝑆))
2827ifbid 4571 . . . . . . . . . . . 12 (𝑦 = 𝑥 → if(𝑦𝑆, 𝐶, 𝐵) = if(𝑥𝑆, 𝐶, 𝐵))
29 eqid 2740 . . . . . . . . . . . 12 (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))
3028, 29fvmptg 7027 . . . . . . . . . . 11 ((𝑥𝐴 ∧ if(𝑥𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) → ((𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥𝑆, 𝐶, 𝐵))
3124, 26, 30syl2anr 596 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → ((𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥𝑆, 𝐶, 𝐵))
3223, 31eqtrd 2780 . . . . . . . . 9 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝐺𝑥) = if(𝑥𝑆, 𝐶, 𝐵))
3332eqeq1d 2742 . . . . . . . 8 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → ((𝐺𝑥) = 𝐶 ↔ if(𝑥𝑆, 𝐶, 𝐵) = 𝐶))
3421, 33bitr4d 282 . . . . . . 7 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝑥𝑆 ↔ (𝐺𝑥) = 𝐶))
3534pm5.32da 578 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → ((𝑥𝐴𝑥𝑆) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 𝐶)))
36 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝑆𝐴)
3736sseld 4007 . . . . . . 7 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥𝑆𝑥𝐴))
3837pm4.71rd 562 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥𝑆 ↔ (𝑥𝐴𝑥𝑆)))
39 ffn 6747 . . . . . . . 8 (𝐺:𝐴⟶{𝐵, 𝐶} → 𝐺 Fn 𝐴)
4013, 39syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝐺 Fn 𝐴)
41 fniniseg 7093 . . . . . . 7 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ {𝐶}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 𝐶)))
4240, 41syl 17 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ (𝐺 “ {𝐶}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 𝐶)))
4335, 38, 423bitr4d 311 . . . . 5 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥𝑆𝑥 ∈ (𝐺 “ {𝐶})))
4443eqrdv 2738 . . . 4 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝑆 = (𝐺 “ {𝐶}))
4513, 44jca 511 . . 3 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶})))
46 simprr 772 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝑆 = (𝐺 “ {𝐶}))
47 cnvimass 6111 . . . . . 6 (𝐺 “ {𝐶}) ⊆ dom 𝐺
48 fdm 6756 . . . . . . 7 (𝐺:𝐴⟶{𝐵, 𝐶} → dom 𝐺 = 𝐴)
4948ad2antrl 727 . . . . . 6 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → dom 𝐺 = 𝐴)
5047, 49sseqtrid 4061 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝐺 “ {𝐶}) ⊆ 𝐴)
5146, 50eqsstrd 4047 . . . 4 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝑆𝐴)
5239ad2antrl 727 . . . . . 6 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺 Fn 𝐴)
53 dffn5 6980 . . . . . 6 (𝐺 Fn 𝐴𝐺 = (𝑦𝐴 ↦ (𝐺𝑦)))
5452, 53sylib 218 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺 = (𝑦𝐴 ↦ (𝐺𝑦)))
55 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → 𝑆 = (𝐺 “ {𝐶}))
5655eleq2d 2830 . . . . . . . . . 10 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝑦𝑆𝑦 ∈ (𝐺 “ {𝐶})))
57 fniniseg 7093 . . . . . . . . . . . 12 (𝐺 Fn 𝐴 → (𝑦 ∈ (𝐺 “ {𝐶}) ↔ (𝑦𝐴 ∧ (𝐺𝑦) = 𝐶)))
5852, 57syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝑦 ∈ (𝐺 “ {𝐶}) ↔ (𝑦𝐴 ∧ (𝐺𝑦) = 𝐶)))
5958baibd 539 . . . . . . . . . 10 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝑦 ∈ (𝐺 “ {𝐶}) ↔ (𝐺𝑦) = 𝐶))
6056, 59bitrd 279 . . . . . . . . 9 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝑦𝑆 ↔ (𝐺𝑦) = 𝐶))
6160biimpa 476 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ 𝑦𝑆) → (𝐺𝑦) = 𝐶)
62 iftrue 4554 . . . . . . . . 9 (𝑦𝑆 → if(𝑦𝑆, 𝐶, 𝐵) = 𝐶)
6362adantl 481 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ 𝑦𝑆) → if(𝑦𝑆, 𝐶, 𝐵) = 𝐶)
6461, 63eqtr4d 2783 . . . . . . 7 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ 𝑦𝑆) → (𝐺𝑦) = if(𝑦𝑆, 𝐶, 𝐵))
65 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺:𝐴⟶{𝐵, 𝐶})
6665ffvelcdmda 7118 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝐺𝑦) ∈ {𝐵, 𝐶})
67 fvex 6933 . . . . . . . . . . . . . 14 (𝐺𝑦) ∈ V
6867elpr 4672 . . . . . . . . . . . . 13 ((𝐺𝑦) ∈ {𝐵, 𝐶} ↔ ((𝐺𝑦) = 𝐵 ∨ (𝐺𝑦) = 𝐶))
6966, 68sylib 218 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → ((𝐺𝑦) = 𝐵 ∨ (𝐺𝑦) = 𝐶))
7069ord 863 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (¬ (𝐺𝑦) = 𝐵 → (𝐺𝑦) = 𝐶))
7170, 60sylibrd 259 . . . . . . . . . 10 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (¬ (𝐺𝑦) = 𝐵𝑦𝑆))
7271con1d 145 . . . . . . . . 9 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (¬ 𝑦𝑆 → (𝐺𝑦) = 𝐵))
7372imp 406 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → (𝐺𝑦) = 𝐵)
74 iffalse 4557 . . . . . . . . 9 𝑦𝑆 → if(𝑦𝑆, 𝐶, 𝐵) = 𝐵)
7574adantl 481 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → if(𝑦𝑆, 𝐶, 𝐵) = 𝐵)
7673, 75eqtr4d 2783 . . . . . . 7 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → (𝐺𝑦) = if(𝑦𝑆, 𝐶, 𝐵))
7764, 76pm2.61dan 812 . . . . . 6 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝐺𝑦) = if(𝑦𝑆, 𝐶, 𝐵))
7877mpteq2dva 5266 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝑦𝐴 ↦ (𝐺𝑦)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
7954, 78eqtrd 2780 . . . 4 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
8051, 79jca 511 . . 3 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))))
8145, 80impbida 800 . 2 (𝜑 → ((𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))))
82 pw2f1o.1 . . . 4 (𝜑𝐴𝑉)
83 elpw2g 5351 . . . 4 (𝐴𝑉 → (𝑆 ∈ 𝒫 𝐴𝑆𝐴))
8482, 83syl 17 . . 3 (𝜑 → (𝑆 ∈ 𝒫 𝐴𝑆𝐴))
85 eleq1w 2827 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑆𝑦𝑆))
8685ifbid 4571 . . . . . 6 (𝑧 = 𝑦 → if(𝑧𝑆, 𝐶, 𝐵) = if(𝑦𝑆, 𝐶, 𝐵))
8786cbvmptv 5279 . . . . 5 (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))
8887a1i 11 . . . 4 (𝜑 → (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
8988eqeq2d 2751 . . 3 (𝜑 → (𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵)) ↔ 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))))
9084, 89anbi12d 631 . 2 (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))))
91 prex 5452 . . . 4 {𝐵, 𝐶} ∈ V
92 elmapg 8897 . . . 4 (({𝐵, 𝐶} ∈ V ∧ 𝐴𝑉) → (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶}))
9391, 82, 92sylancr 586 . . 3 (𝜑 → (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶}))
9493anbi1d 630 . 2 (𝜑 → ((𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶})) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))))
9581, 90, 943bitr4d 311 1 (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  wss 3976  ifcif 4548  𝒫 cpw 4622  {csn 4648  {cpr 4650  cmpt 5249  ccnv 5699  dom cdm 5700  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886
This theorem is referenced by:  pw2f1o  9143  sqff1o  27243
  Copyright terms: Public domain W3C validator