Step | Hyp | Ref
| Expression |
1 | | pw2f1o.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ 𝑊) |
2 | | prid2g 4697 |
. . . . . . . . . 10
⊢ (𝐶 ∈ 𝑊 → 𝐶 ∈ {𝐵, 𝐶}) |
3 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ {𝐵, 𝐶}) |
4 | | pw2f1o.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
5 | | prid1g 4696 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐵, 𝐶}) |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ {𝐵, 𝐶}) |
7 | 3, 6 | ifcld 4505 |
. . . . . . . 8
⊢ (𝜑 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
8 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
9 | 8 | fmpttd 6989 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶}) |
10 | 9 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶}) |
11 | | simprr 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
12 | 11 | feq1d 6585 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ↔ (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶})) |
13 | 10, 12 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝐺:𝐴⟶{𝐵, 𝐶}) |
14 | | iftrue 4465 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑆 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶) |
15 | | pw2f1o.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
16 | 15 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ 𝐶) |
17 | | iffalse 4468 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 ∈ 𝑆 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐵) |
18 | 17 | neeq1d 3003 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝑆 → (if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
19 | 16, 18 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ 𝑆 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ≠ 𝐶)) |
20 | 19 | necon4bd 2963 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶 → 𝑥 ∈ 𝑆)) |
21 | 14, 20 | impbid2 225 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝑆 ↔ if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶)) |
22 | | simplrr 775 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
23 | 22 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = ((𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))‘𝑥)) |
24 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) |
25 | 3, 6 | ifcld 4505 |
. . . . . . . . . . . 12
⊢ (𝜑 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
26 | 25 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
27 | | eleq1w 2821 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑆 ↔ 𝑥 ∈ 𝑆)) |
28 | 27 | ifbid 4482 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
29 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
30 | 28, 29 | fvmptg 6873 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) → ((𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
31 | 24, 26, 30 | syl2anr 597 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
32 | 23, 31 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
33 | 32 | eqeq1d 2740 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) = 𝐶 ↔ if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶)) |
34 | 21, 33 | bitr4d 281 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝑆 ↔ (𝐺‘𝑥) = 𝐶)) |
35 | 34 | pm5.32da 579 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑆) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 𝐶))) |
36 | | simprl 768 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝑆 ⊆ 𝐴) |
37 | 36 | sseld 3920 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐴)) |
38 | 37 | pm4.71rd 563 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑆))) |
39 | | ffn 6600 |
. . . . . . . 8
⊢ (𝐺:𝐴⟶{𝐵, 𝐶} → 𝐺 Fn 𝐴) |
40 | 13, 39 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝐺 Fn 𝐴) |
41 | | fniniseg 6937 |
. . . . . . 7
⊢ (𝐺 Fn 𝐴 → (𝑥 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 𝐶))) |
42 | 40, 41 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 𝐶))) |
43 | 35, 38, 42 | 3bitr4d 311 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐺 “ {𝐶}))) |
44 | 43 | eqrdv 2736 |
. . . 4
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝑆 = (◡𝐺 “ {𝐶})) |
45 | 13, 44 | jca 512 |
. . 3
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) |
46 | | simprr 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝑆 = (◡𝐺 “ {𝐶})) |
47 | | cnvimass 5989 |
. . . . . 6
⊢ (◡𝐺 “ {𝐶}) ⊆ dom 𝐺 |
48 | | fdm 6609 |
. . . . . . 7
⊢ (𝐺:𝐴⟶{𝐵, 𝐶} → dom 𝐺 = 𝐴) |
49 | 48 | ad2antrl 725 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → dom 𝐺 = 𝐴) |
50 | 47, 49 | sseqtrid 3973 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (◡𝐺 “ {𝐶}) ⊆ 𝐴) |
51 | 46, 50 | eqsstrd 3959 |
. . . 4
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝑆 ⊆ 𝐴) |
52 | 39 | ad2antrl 725 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺 Fn 𝐴) |
53 | | dffn5 6828 |
. . . . . 6
⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑦 ∈ 𝐴 ↦ (𝐺‘𝑦))) |
54 | 52, 53 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺 = (𝑦 ∈ 𝐴 ↦ (𝐺‘𝑦))) |
55 | | simplrr 775 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → 𝑆 = (◡𝐺 “ {𝐶})) |
56 | 55 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ 𝑆 ↔ 𝑦 ∈ (◡𝐺 “ {𝐶}))) |
57 | | fniniseg 6937 |
. . . . . . . . . . . 12
⊢ (𝐺 Fn 𝐴 → (𝑦 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑦 ∈ 𝐴 ∧ (𝐺‘𝑦) = 𝐶))) |
58 | 52, 57 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (𝑦 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑦 ∈ 𝐴 ∧ (𝐺‘𝑦) = 𝐶))) |
59 | 58 | baibd 540 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ (◡𝐺 “ {𝐶}) ↔ (𝐺‘𝑦) = 𝐶)) |
60 | 56, 59 | bitrd 278 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ 𝑆 ↔ (𝐺‘𝑦) = 𝐶)) |
61 | 60 | biimpa 477 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = 𝐶) |
62 | | iftrue 4465 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑆 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐶) |
63 | 62 | adantl 482 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐶) |
64 | 61, 63 | eqtr4d 2781 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
65 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺:𝐴⟶{𝐵, 𝐶}) |
66 | 65 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝐺‘𝑦) ∈ {𝐵, 𝐶}) |
67 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢ (𝐺‘𝑦) ∈ V |
68 | 67 | elpr 4584 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑦) ∈ {𝐵, 𝐶} ↔ ((𝐺‘𝑦) = 𝐵 ∨ (𝐺‘𝑦) = 𝐶)) |
69 | 66, 68 | sylib 217 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → ((𝐺‘𝑦) = 𝐵 ∨ (𝐺‘𝑦) = 𝐶)) |
70 | 69 | ord 861 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (¬ (𝐺‘𝑦) = 𝐵 → (𝐺‘𝑦) = 𝐶)) |
71 | 70, 60 | sylibrd 258 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (¬ (𝐺‘𝑦) = 𝐵 → 𝑦 ∈ 𝑆)) |
72 | 71 | con1d 145 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑦 ∈ 𝑆 → (𝐺‘𝑦) = 𝐵)) |
73 | 72 | imp 407 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = 𝐵) |
74 | | iffalse 4468 |
. . . . . . . . 9
⊢ (¬
𝑦 ∈ 𝑆 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐵) |
75 | 74 | adantl 482 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐵) |
76 | 73, 75 | eqtr4d 2781 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
77 | 64, 76 | pm2.61dan 810 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝐺‘𝑦) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
78 | 77 | mpteq2dva 5174 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (𝑦 ∈ 𝐴 ↦ (𝐺‘𝑦)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
79 | 54, 78 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
80 | 51, 79 | jca 512 |
. . 3
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) |
81 | 45, 80 | impbida 798 |
. 2
⊢ (𝜑 → ((𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶})))) |
82 | | pw2f1o.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
83 | | elpw2g 5268 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑆 ∈ 𝒫 𝐴 ↔ 𝑆 ⊆ 𝐴)) |
84 | 82, 83 | syl 17 |
. . 3
⊢ (𝜑 → (𝑆 ∈ 𝒫 𝐴 ↔ 𝑆 ⊆ 𝐴)) |
85 | | eleq1w 2821 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) |
86 | 85 | ifbid 4482 |
. . . . . 6
⊢ (𝑧 = 𝑦 → if(𝑧 ∈ 𝑆, 𝐶, 𝐵) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
87 | 86 | cbvmptv 5187 |
. . . . 5
⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
88 | 87 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
89 | 88 | eqeq2d 2749 |
. . 3
⊢ (𝜑 → (𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵)) ↔ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) |
90 | 84, 89 | anbi12d 631 |
. 2
⊢ (𝜑 → ((𝑆 ∈ 𝒫 𝐴 ∧ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))))) |
91 | | prex 5355 |
. . . 4
⊢ {𝐵, 𝐶} ∈ V |
92 | | elmapg 8628 |
. . . 4
⊢ (({𝐵, 𝐶} ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶})) |
93 | 91, 82, 92 | sylancr 587 |
. . 3
⊢ (𝜑 → (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶})) |
94 | 93 | anbi1d 630 |
. 2
⊢ (𝜑 → ((𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑆 = (◡𝐺 “ {𝐶})) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶})))) |
95 | 81, 90, 94 | 3bitr4d 311 |
1
⊢ (𝜑 → ((𝑆 ∈ 𝒫 𝐴 ∧ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑆 = (◡𝐺 “ {𝐶})))) |