MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isxmet2d Structured version   Visualization version   GIF version

Theorem isxmet2d 24266
Description: It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: 𝐷(𝑥, 𝑦) = if(𝑥 = 𝑦, 0, -∞) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
isxmetd.0 (𝜑𝑋𝑉)
isxmetd.1 (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)
isxmet2d.2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐷𝑦))
isxmet2d.3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
isxmet2d.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
Assertion
Ref Expression
isxmet2d (𝜑𝐷 ∈ (∞Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem isxmet2d
StepHypRef Expression
1 isxmetd.0 . 2 (𝜑𝑋𝑉)
2 isxmetd.1 . 2 (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)
32fovcdmda 7578 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ∈ ℝ*)
4 0xr 11282 . . . 4 0 ∈ ℝ*
5 xrletri3 13170 . . . 4 (((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
63, 4, 5sylancl 586 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
7 isxmet2d.2 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐷𝑦))
87biantrud 531 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
9 isxmet2d.3 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
106, 8, 93bitr2d 307 . 2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
11 isxmet2d.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
12113expa 1118 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
13 rexadd 13248 . . . . . . 7 (((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1413adantl 481 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1512, 14breqtrrd 5147 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
1615anassrs 467 . . . 4 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) ∈ ℝ) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
1733adantr3 1172 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ∈ ℝ*)
18 pnfge 13146 . . . . . . 7 ((𝑥𝐷𝑦) ∈ ℝ* → (𝑥𝐷𝑦) ≤ +∞)
1917, 18syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ≤ +∞)
2019ad2antrr 726 . . . . 5 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → (𝑥𝐷𝑦) ≤ +∞)
21 oveq2 7413 . . . . . 6 ((𝑧𝐷𝑦) = +∞ → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) +𝑒 +∞))
222ffnd 6707 . . . . . . . . . . 11 (𝜑𝐷 Fn (𝑋 × 𝑋))
23 elxrge0 13474 . . . . . . . . . . . . 13 ((𝑥𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥𝐷𝑦)))
243, 7, 23sylanbrc 583 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ∈ (0[,]+∞))
2524ralrimivva 3187 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) ∈ (0[,]+∞))
26 ffnov 7533 . . . . . . . . . . 11 (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) ∈ (0[,]+∞)))
2722, 25, 26sylanbrc 583 . . . . . . . . . 10 (𝜑𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
2827adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
29 simpr3 1197 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 𝑧𝑋)
30 simpr1 1195 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 𝑥𝑋)
3128, 29, 30fovcdmd 7579 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑥) ∈ (0[,]+∞))
32 eliccxr 13452 . . . . . . . 8 ((𝑧𝐷𝑥) ∈ (0[,]+∞) → (𝑧𝐷𝑥) ∈ ℝ*)
3331, 32syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑥) ∈ ℝ*)
34 renemnf 11284 . . . . . . 7 ((𝑧𝐷𝑥) ∈ ℝ → (𝑧𝐷𝑥) ≠ -∞)
35 xaddpnf1 13242 . . . . . . 7 (((𝑧𝐷𝑥) ∈ ℝ* ∧ (𝑧𝐷𝑥) ≠ -∞) → ((𝑧𝐷𝑥) +𝑒 +∞) = +∞)
3633, 34, 35syl2an 596 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑥) +𝑒 +∞) = +∞)
3721, 36sylan9eqr 2792 . . . . 5 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = +∞)
3820, 37breqtrrd 5147 . . . 4 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
39 simpr2 1196 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 𝑦𝑋)
4028, 29, 39fovcdmd 7579 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑦) ∈ (0[,]+∞))
41 eliccxr 13452 . . . . . . . . . 10 ((𝑧𝐷𝑦) ∈ (0[,]+∞) → (𝑧𝐷𝑦) ∈ ℝ*)
4240, 41syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑦) ∈ ℝ*)
43 elxrge0 13474 . . . . . . . . . . 11 ((𝑧𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑦)))
4443simprbi 496 . . . . . . . . . 10 ((𝑧𝐷𝑦) ∈ (0[,]+∞) → 0 ≤ (𝑧𝐷𝑦))
4540, 44syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 0 ≤ (𝑧𝐷𝑦))
46 ge0nemnf 13189 . . . . . . . . 9 (((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑦)) → (𝑧𝐷𝑦) ≠ -∞)
4742, 45, 46syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑦) ≠ -∞)
4847a1d 25 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (¬ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) → (𝑧𝐷𝑦) ≠ -∞))
4948necon4bd 2952 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑧𝐷𝑦) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
5049adantr 480 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑦) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
5150imp 406 . . . 4 ((((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = -∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
5242adantr 480 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → (𝑧𝐷𝑦) ∈ ℝ*)
53 elxr 13132 . . . . 5 ((𝑧𝐷𝑦) ∈ ℝ* ↔ ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞))
5452, 53sylib 218 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞))
5516, 38, 51, 54mpjao3dan 1434 . . 3 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
5619adantr 480 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → (𝑥𝐷𝑦) ≤ +∞)
57 oveq1 7412 . . . . 5 ((𝑧𝐷𝑥) = +∞ → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = (+∞ +𝑒 (𝑧𝐷𝑦)))
58 xaddpnf2 13243 . . . . . 6 (((𝑧𝐷𝑦) ∈ ℝ* ∧ (𝑧𝐷𝑦) ≠ -∞) → (+∞ +𝑒 (𝑧𝐷𝑦)) = +∞)
5942, 47, 58syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (+∞ +𝑒 (𝑧𝐷𝑦)) = +∞)
6057, 59sylan9eqr 2792 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = +∞)
6156, 60breqtrrd 5147 . . 3 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
62 elxrge0 13474 . . . . . . . . 9 ((𝑧𝐷𝑥) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑥)))
6362simprbi 496 . . . . . . . 8 ((𝑧𝐷𝑥) ∈ (0[,]+∞) → 0 ≤ (𝑧𝐷𝑥))
6431, 63syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → 0 ≤ (𝑧𝐷𝑥))
65 ge0nemnf 13189 . . . . . . 7 (((𝑧𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑥)) → (𝑧𝐷𝑥) ≠ -∞)
6633, 64, 65syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑧𝐷𝑥) ≠ -∞)
6766a1d 25 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (¬ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) → (𝑧𝐷𝑥) ≠ -∞))
6867necon4bd 2952 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑧𝐷𝑥) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
6968imp 406 . . 3 (((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) ∧ (𝑧𝐷𝑥) = -∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
70 elxr 13132 . . . 4 ((𝑧𝐷𝑥) ∈ ℝ* ↔ ((𝑧𝐷𝑥) ∈ ℝ ∨ (𝑧𝐷𝑥) = +∞ ∨ (𝑧𝐷𝑥) = -∞))
7133, 70sylib 218 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑧𝐷𝑥) ∈ ℝ ∨ (𝑧𝐷𝑥) = +∞ ∨ (𝑧𝐷𝑥) = -∞))
7255, 61, 69, 71mpjao3dan 1434 . 2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
731, 2, 10, 72isxmetd 24265 1 (𝜑𝐷 ∈ (∞Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051   class class class wbr 5119   × cxp 5652   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129   + caddc 11132  +∞cpnf 11266  -∞cmnf 11267  *cxr 11268  cle 11270   +𝑒 cxad 13126  [,]cicc 13365  ∞Metcxmet 21300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-i2m1 11197  ax-rnegex 11200  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-xadd 13129  df-icc 13369  df-xmet 21308
This theorem is referenced by:  prdsxmetlem  24307  xrsxmet  24749
  Copyright terms: Public domain W3C validator