MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isxmet2d Structured version   Visualization version   GIF version

Theorem isxmet2d 23824
Description: It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: 𝐷(π‘₯, 𝑦) = if(π‘₯ = 𝑦, 0, -∞) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
isxmetd.0 (πœ‘ β†’ 𝑋 ∈ 𝑉)
isxmetd.1 (πœ‘ β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
isxmet2d.2 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ (π‘₯𝐷𝑦))
isxmet2d.3 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘₯𝐷𝑦) ≀ 0 ↔ π‘₯ = 𝑦))
isxmet2d.4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑧𝐷π‘₯) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
Assertion
Ref Expression
isxmet2d (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
Distinct variable groups:   π‘₯,𝑦,𝑧,𝐷   πœ‘,π‘₯,𝑦,𝑧   π‘₯,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑉(π‘₯,𝑦,𝑧)

Proof of Theorem isxmet2d
StepHypRef Expression
1 isxmetd.0 . 2 (πœ‘ β†’ 𝑋 ∈ 𝑉)
2 isxmetd.1 . 2 (πœ‘ β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
32fovcdmda 7574 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) ∈ ℝ*)
4 0xr 11257 . . . 4 0 ∈ ℝ*
5 xrletri3 13129 . . . 4 (((π‘₯𝐷𝑦) ∈ ℝ* ∧ 0 ∈ ℝ*) β†’ ((π‘₯𝐷𝑦) = 0 ↔ ((π‘₯𝐷𝑦) ≀ 0 ∧ 0 ≀ (π‘₯𝐷𝑦))))
63, 4, 5sylancl 586 . . 3 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘₯𝐷𝑦) = 0 ↔ ((π‘₯𝐷𝑦) ≀ 0 ∧ 0 ≀ (π‘₯𝐷𝑦))))
7 isxmet2d.2 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ (π‘₯𝐷𝑦))
87biantrud 532 . . 3 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘₯𝐷𝑦) ≀ 0 ↔ ((π‘₯𝐷𝑦) ≀ 0 ∧ 0 ≀ (π‘₯𝐷𝑦))))
9 isxmet2d.3 . . 3 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘₯𝐷𝑦) ≀ 0 ↔ π‘₯ = 𝑦))
106, 8, 93bitr2d 306 . 2 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦))
11 isxmet2d.4 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑧𝐷π‘₯) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
12113expa 1118 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷π‘₯) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
13 rexadd 13207 . . . . . . 7 (((𝑧𝐷π‘₯) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ) β†’ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
1413adantl 482 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷π‘₯) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) β†’ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
1512, 14breqtrrd 5175 . . . . 5 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷π‘₯) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
1615anassrs 468 . . . 4 ((((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) ∧ (𝑧𝐷𝑦) ∈ ℝ) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
1733adantr3 1171 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) ∈ ℝ*)
18 pnfge 13106 . . . . . . 7 ((π‘₯𝐷𝑦) ∈ ℝ* β†’ (π‘₯𝐷𝑦) ≀ +∞)
1917, 18syl 17 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) ≀ +∞)
2019ad2antrr 724 . . . . 5 ((((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) β†’ (π‘₯𝐷𝑦) ≀ +∞)
21 oveq2 7413 . . . . . 6 ((𝑧𝐷𝑦) = +∞ β†’ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷π‘₯) +𝑒 +∞))
222ffnd 6715 . . . . . . . . . . 11 (πœ‘ β†’ 𝐷 Fn (𝑋 Γ— 𝑋))
23 elxrge0 13430 . . . . . . . . . . . . 13 ((π‘₯𝐷𝑦) ∈ (0[,]+∞) ↔ ((π‘₯𝐷𝑦) ∈ ℝ* ∧ 0 ≀ (π‘₯𝐷𝑦)))
243, 7, 23sylanbrc 583 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) ∈ (0[,]+∞))
2524ralrimivva 3200 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯𝐷𝑦) ∈ (0[,]+∞))
26 ffnov 7531 . . . . . . . . . . 11 (𝐷:(𝑋 Γ— 𝑋)⟢(0[,]+∞) ↔ (𝐷 Fn (𝑋 Γ— 𝑋) ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯𝐷𝑦) ∈ (0[,]+∞)))
2722, 25, 26sylanbrc 583 . . . . . . . . . 10 (πœ‘ β†’ 𝐷:(𝑋 Γ— 𝑋)⟢(0[,]+∞))
2827adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ 𝐷:(𝑋 Γ— 𝑋)⟢(0[,]+∞))
29 simpr3 1196 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ 𝑧 ∈ 𝑋)
30 simpr1 1194 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ π‘₯ ∈ 𝑋)
3128, 29, 30fovcdmd 7575 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (𝑧𝐷π‘₯) ∈ (0[,]+∞))
32 eliccxr 13408 . . . . . . . 8 ((𝑧𝐷π‘₯) ∈ (0[,]+∞) β†’ (𝑧𝐷π‘₯) ∈ ℝ*)
3331, 32syl 17 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (𝑧𝐷π‘₯) ∈ ℝ*)
34 renemnf 11259 . . . . . . 7 ((𝑧𝐷π‘₯) ∈ ℝ β†’ (𝑧𝐷π‘₯) β‰  -∞)
35 xaddpnf1 13201 . . . . . . 7 (((𝑧𝐷π‘₯) ∈ ℝ* ∧ (𝑧𝐷π‘₯) β‰  -∞) β†’ ((𝑧𝐷π‘₯) +𝑒 +∞) = +∞)
3633, 34, 35syl2an 596 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) β†’ ((𝑧𝐷π‘₯) +𝑒 +∞) = +∞)
3721, 36sylan9eqr 2794 . . . . 5 ((((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) β†’ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) = +∞)
3820, 37breqtrrd 5175 . . . 4 ((((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
39 simpr2 1195 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ 𝑦 ∈ 𝑋)
4028, 29, 39fovcdmd 7575 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (𝑧𝐷𝑦) ∈ (0[,]+∞))
41 eliccxr 13408 . . . . . . . . . 10 ((𝑧𝐷𝑦) ∈ (0[,]+∞) β†’ (𝑧𝐷𝑦) ∈ ℝ*)
4240, 41syl 17 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (𝑧𝐷𝑦) ∈ ℝ*)
43 elxrge0 13430 . . . . . . . . . . 11 ((𝑧𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≀ (𝑧𝐷𝑦)))
4443simprbi 497 . . . . . . . . . 10 ((𝑧𝐷𝑦) ∈ (0[,]+∞) β†’ 0 ≀ (𝑧𝐷𝑦))
4540, 44syl 17 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ 0 ≀ (𝑧𝐷𝑦))
46 ge0nemnf 13148 . . . . . . . . 9 (((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≀ (𝑧𝐷𝑦)) β†’ (𝑧𝐷𝑦) β‰  -∞)
4742, 45, 46syl2anc 584 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (𝑧𝐷𝑦) β‰  -∞)
4847a1d 25 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (Β¬ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) β†’ (𝑧𝐷𝑦) β‰  -∞))
4948necon4bd 2960 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ ((𝑧𝐷𝑦) = -∞ β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))
5049adantr 481 . . . . 5 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) β†’ ((𝑧𝐷𝑦) = -∞ β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))
5150imp 407 . . . 4 ((((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) ∧ (𝑧𝐷𝑦) = -∞) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
5242adantr 481 . . . . 5 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) β†’ (𝑧𝐷𝑦) ∈ ℝ*)
53 elxr 13092 . . . . 5 ((𝑧𝐷𝑦) ∈ ℝ* ↔ ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞))
5452, 53sylib 217 . . . 4 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) β†’ ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞))
5516, 38, 51, 54mpjao3dan 1431 . . 3 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
5619adantr 481 . . . 4 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) = +∞) β†’ (π‘₯𝐷𝑦) ≀ +∞)
57 oveq1 7412 . . . . 5 ((𝑧𝐷π‘₯) = +∞ β†’ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) = (+∞ +𝑒 (𝑧𝐷𝑦)))
58 xaddpnf2 13202 . . . . . 6 (((𝑧𝐷𝑦) ∈ ℝ* ∧ (𝑧𝐷𝑦) β‰  -∞) β†’ (+∞ +𝑒 (𝑧𝐷𝑦)) = +∞)
5942, 47, 58syl2anc 584 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (+∞ +𝑒 (𝑧𝐷𝑦)) = +∞)
6057, 59sylan9eqr 2794 . . . 4 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) = +∞) β†’ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) = +∞)
6156, 60breqtrrd 5175 . . 3 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) = +∞) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
62 elxrge0 13430 . . . . . . . . 9 ((𝑧𝐷π‘₯) ∈ (0[,]+∞) ↔ ((𝑧𝐷π‘₯) ∈ ℝ* ∧ 0 ≀ (𝑧𝐷π‘₯)))
6362simprbi 497 . . . . . . . 8 ((𝑧𝐷π‘₯) ∈ (0[,]+∞) β†’ 0 ≀ (𝑧𝐷π‘₯))
6431, 63syl 17 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ 0 ≀ (𝑧𝐷π‘₯))
65 ge0nemnf 13148 . . . . . . 7 (((𝑧𝐷π‘₯) ∈ ℝ* ∧ 0 ≀ (𝑧𝐷π‘₯)) β†’ (𝑧𝐷π‘₯) β‰  -∞)
6633, 64, 65syl2anc 584 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (𝑧𝐷π‘₯) β‰  -∞)
6766a1d 25 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (Β¬ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) β†’ (𝑧𝐷π‘₯) β‰  -∞))
6867necon4bd 2960 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ ((𝑧𝐷π‘₯) = -∞ β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))
6968imp 407 . . 3 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) = -∞) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
70 elxr 13092 . . . 4 ((𝑧𝐷π‘₯) ∈ ℝ* ↔ ((𝑧𝐷π‘₯) ∈ ℝ ∨ (𝑧𝐷π‘₯) = +∞ ∨ (𝑧𝐷π‘₯) = -∞))
7133, 70sylib 217 . . 3 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ ((𝑧𝐷π‘₯) ∈ ℝ ∨ (𝑧𝐷π‘₯) = +∞ ∨ (𝑧𝐷π‘₯) = -∞))
7255, 61, 69, 71mpjao3dan 1431 . 2 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
731, 2, 10, 72isxmetd 23823 1 (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ w3o 1086   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   class class class wbr 5147   Γ— cxp 5673   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  β„cr 11105  0cc0 11106   + caddc 11109  +∞cpnf 11241  -∞cmnf 11242  β„*cxr 11243   ≀ cle 11245   +𝑒 cxad 13086  [,]cicc 13323  βˆžMetcxmet 20921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-i2m1 11174  ax-rnegex 11177  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-xadd 13089  df-icc 13327  df-xmet 20929
This theorem is referenced by:  prdsxmetlem  23865  xrsxmet  24316
  Copyright terms: Public domain W3C validator