MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isxmet2d Structured version   Visualization version   GIF version

Theorem isxmet2d 24261
Description: It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: 𝐷(π‘₯, 𝑦) = if(π‘₯ = 𝑦, 0, -∞) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
isxmetd.0 (πœ‘ β†’ 𝑋 ∈ 𝑉)
isxmetd.1 (πœ‘ β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
isxmet2d.2 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ (π‘₯𝐷𝑦))
isxmet2d.3 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘₯𝐷𝑦) ≀ 0 ↔ π‘₯ = 𝑦))
isxmet2d.4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑧𝐷π‘₯) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
Assertion
Ref Expression
isxmet2d (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
Distinct variable groups:   π‘₯,𝑦,𝑧,𝐷   πœ‘,π‘₯,𝑦,𝑧   π‘₯,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑉(π‘₯,𝑦,𝑧)

Proof of Theorem isxmet2d
StepHypRef Expression
1 isxmetd.0 . 2 (πœ‘ β†’ 𝑋 ∈ 𝑉)
2 isxmetd.1 . 2 (πœ‘ β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
32fovcdmda 7599 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) ∈ ℝ*)
4 0xr 11301 . . . 4 0 ∈ ℝ*
5 xrletri3 13175 . . . 4 (((π‘₯𝐷𝑦) ∈ ℝ* ∧ 0 ∈ ℝ*) β†’ ((π‘₯𝐷𝑦) = 0 ↔ ((π‘₯𝐷𝑦) ≀ 0 ∧ 0 ≀ (π‘₯𝐷𝑦))))
63, 4, 5sylancl 584 . . 3 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘₯𝐷𝑦) = 0 ↔ ((π‘₯𝐷𝑦) ≀ 0 ∧ 0 ≀ (π‘₯𝐷𝑦))))
7 isxmet2d.2 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ (π‘₯𝐷𝑦))
87biantrud 530 . . 3 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘₯𝐷𝑦) ≀ 0 ↔ ((π‘₯𝐷𝑦) ≀ 0 ∧ 0 ≀ (π‘₯𝐷𝑦))))
9 isxmet2d.3 . . 3 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘₯𝐷𝑦) ≀ 0 ↔ π‘₯ = 𝑦))
106, 8, 93bitr2d 306 . 2 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦))
11 isxmet2d.4 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑧𝐷π‘₯) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
12113expa 1115 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷π‘₯) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
13 rexadd 13253 . . . . . . 7 (((𝑧𝐷π‘₯) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ) β†’ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
1413adantl 480 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷π‘₯) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) β†’ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
1512, 14breqtrrd 5180 . . . . 5 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷π‘₯) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
1615anassrs 466 . . . 4 ((((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) ∧ (𝑧𝐷𝑦) ∈ ℝ) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
1733adantr3 1168 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) ∈ ℝ*)
18 pnfge 13152 . . . . . . 7 ((π‘₯𝐷𝑦) ∈ ℝ* β†’ (π‘₯𝐷𝑦) ≀ +∞)
1917, 18syl 17 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) ≀ +∞)
2019ad2antrr 724 . . . . 5 ((((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) β†’ (π‘₯𝐷𝑦) ≀ +∞)
21 oveq2 7434 . . . . . 6 ((𝑧𝐷𝑦) = +∞ β†’ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷π‘₯) +𝑒 +∞))
222ffnd 6728 . . . . . . . . . . 11 (πœ‘ β†’ 𝐷 Fn (𝑋 Γ— 𝑋))
23 elxrge0 13476 . . . . . . . . . . . . 13 ((π‘₯𝐷𝑦) ∈ (0[,]+∞) ↔ ((π‘₯𝐷𝑦) ∈ ℝ* ∧ 0 ≀ (π‘₯𝐷𝑦)))
243, 7, 23sylanbrc 581 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) ∈ (0[,]+∞))
2524ralrimivva 3198 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯𝐷𝑦) ∈ (0[,]+∞))
26 ffnov 7554 . . . . . . . . . . 11 (𝐷:(𝑋 Γ— 𝑋)⟢(0[,]+∞) ↔ (𝐷 Fn (𝑋 Γ— 𝑋) ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯𝐷𝑦) ∈ (0[,]+∞)))
2722, 25, 26sylanbrc 581 . . . . . . . . . 10 (πœ‘ β†’ 𝐷:(𝑋 Γ— 𝑋)⟢(0[,]+∞))
2827adantr 479 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ 𝐷:(𝑋 Γ— 𝑋)⟢(0[,]+∞))
29 simpr3 1193 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ 𝑧 ∈ 𝑋)
30 simpr1 1191 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ π‘₯ ∈ 𝑋)
3128, 29, 30fovcdmd 7600 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (𝑧𝐷π‘₯) ∈ (0[,]+∞))
32 eliccxr 13454 . . . . . . . 8 ((𝑧𝐷π‘₯) ∈ (0[,]+∞) β†’ (𝑧𝐷π‘₯) ∈ ℝ*)
3331, 32syl 17 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (𝑧𝐷π‘₯) ∈ ℝ*)
34 renemnf 11303 . . . . . . 7 ((𝑧𝐷π‘₯) ∈ ℝ β†’ (𝑧𝐷π‘₯) β‰  -∞)
35 xaddpnf1 13247 . . . . . . 7 (((𝑧𝐷π‘₯) ∈ ℝ* ∧ (𝑧𝐷π‘₯) β‰  -∞) β†’ ((𝑧𝐷π‘₯) +𝑒 +∞) = +∞)
3633, 34, 35syl2an 594 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) β†’ ((𝑧𝐷π‘₯) +𝑒 +∞) = +∞)
3721, 36sylan9eqr 2790 . . . . 5 ((((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) β†’ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) = +∞)
3820, 37breqtrrd 5180 . . . 4 ((((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
39 simpr2 1192 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ 𝑦 ∈ 𝑋)
4028, 29, 39fovcdmd 7600 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (𝑧𝐷𝑦) ∈ (0[,]+∞))
41 eliccxr 13454 . . . . . . . . . 10 ((𝑧𝐷𝑦) ∈ (0[,]+∞) β†’ (𝑧𝐷𝑦) ∈ ℝ*)
4240, 41syl 17 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (𝑧𝐷𝑦) ∈ ℝ*)
43 elxrge0 13476 . . . . . . . . . . 11 ((𝑧𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≀ (𝑧𝐷𝑦)))
4443simprbi 495 . . . . . . . . . 10 ((𝑧𝐷𝑦) ∈ (0[,]+∞) β†’ 0 ≀ (𝑧𝐷𝑦))
4540, 44syl 17 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ 0 ≀ (𝑧𝐷𝑦))
46 ge0nemnf 13194 . . . . . . . . 9 (((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≀ (𝑧𝐷𝑦)) β†’ (𝑧𝐷𝑦) β‰  -∞)
4742, 45, 46syl2anc 582 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (𝑧𝐷𝑦) β‰  -∞)
4847a1d 25 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (Β¬ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) β†’ (𝑧𝐷𝑦) β‰  -∞))
4948necon4bd 2957 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ ((𝑧𝐷𝑦) = -∞ β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))
5049adantr 479 . . . . 5 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) β†’ ((𝑧𝐷𝑦) = -∞ β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))
5150imp 405 . . . 4 ((((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) ∧ (𝑧𝐷𝑦) = -∞) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
5242adantr 479 . . . . 5 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) β†’ (𝑧𝐷𝑦) ∈ ℝ*)
53 elxr 13138 . . . . 5 ((𝑧𝐷𝑦) ∈ ℝ* ↔ ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞))
5452, 53sylib 217 . . . 4 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) β†’ ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞))
5516, 38, 51, 54mpjao3dan 1428 . . 3 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) ∈ ℝ) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
5619adantr 479 . . . 4 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) = +∞) β†’ (π‘₯𝐷𝑦) ≀ +∞)
57 oveq1 7433 . . . . 5 ((𝑧𝐷π‘₯) = +∞ β†’ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) = (+∞ +𝑒 (𝑧𝐷𝑦)))
58 xaddpnf2 13248 . . . . . 6 (((𝑧𝐷𝑦) ∈ ℝ* ∧ (𝑧𝐷𝑦) β‰  -∞) β†’ (+∞ +𝑒 (𝑧𝐷𝑦)) = +∞)
5942, 47, 58syl2anc 582 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (+∞ +𝑒 (𝑧𝐷𝑦)) = +∞)
6057, 59sylan9eqr 2790 . . . 4 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) = +∞) β†’ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) = +∞)
6156, 60breqtrrd 5180 . . 3 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) = +∞) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
62 elxrge0 13476 . . . . . . . . 9 ((𝑧𝐷π‘₯) ∈ (0[,]+∞) ↔ ((𝑧𝐷π‘₯) ∈ ℝ* ∧ 0 ≀ (𝑧𝐷π‘₯)))
6362simprbi 495 . . . . . . . 8 ((𝑧𝐷π‘₯) ∈ (0[,]+∞) β†’ 0 ≀ (𝑧𝐷π‘₯))
6431, 63syl 17 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ 0 ≀ (𝑧𝐷π‘₯))
65 ge0nemnf 13194 . . . . . . 7 (((𝑧𝐷π‘₯) ∈ ℝ* ∧ 0 ≀ (𝑧𝐷π‘₯)) β†’ (𝑧𝐷π‘₯) β‰  -∞)
6633, 64, 65syl2anc 582 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (𝑧𝐷π‘₯) β‰  -∞)
6766a1d 25 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (Β¬ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)) β†’ (𝑧𝐷π‘₯) β‰  -∞))
6867necon4bd 2957 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ ((𝑧𝐷π‘₯) = -∞ β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))
6968imp 405 . . 3 (((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷π‘₯) = -∞) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
70 elxr 13138 . . . 4 ((𝑧𝐷π‘₯) ∈ ℝ* ↔ ((𝑧𝐷π‘₯) ∈ ℝ ∨ (𝑧𝐷π‘₯) = +∞ ∨ (𝑧𝐷π‘₯) = -∞))
7133, 70sylib 217 . . 3 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ ((𝑧𝐷π‘₯) ∈ ℝ ∨ (𝑧𝐷π‘₯) = +∞ ∨ (𝑧𝐷π‘₯) = -∞))
7255, 61, 69, 71mpjao3dan 1428 . 2 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
731, 2, 10, 72isxmetd 24260 1 (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ w3o 1083   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2937  βˆ€wral 3058   class class class wbr 5152   Γ— cxp 5680   Fn wfn 6548  βŸΆwf 6549  β€˜cfv 6553  (class class class)co 7426  β„cr 11147  0cc0 11148   + caddc 11151  +∞cpnf 11285  -∞cmnf 11286  β„*cxr 11287   ≀ cle 11289   +𝑒 cxad 13132  [,]cicc 13369  βˆžMetcxmet 21278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-i2m1 11216  ax-rnegex 11219  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-er 8733  df-map 8855  df-en 8973  df-dom 8974  df-sdom 8975  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-xadd 13135  df-icc 13373  df-xmet 21286
This theorem is referenced by:  prdsxmetlem  24302  xrsxmet  24753
  Copyright terms: Public domain W3C validator