MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om00 Structured version   Visualization version   GIF version

Theorem om00 8368
Description: The product of two ordinal numbers is zero iff at least one of them is zero. Proposition 8.22 of [TakeutiZaring] p. 64. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
om00 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))

Proof of Theorem om00
StepHypRef Expression
1 neanior 3036 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))
2 eloni 6261 . . . . . . . . . 10 (𝐴 ∈ On → Ord 𝐴)
3 ordge1n0 8290 . . . . . . . . . 10 (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))
42, 3syl 17 . . . . . . . . 9 (𝐴 ∈ On → (1o𝐴𝐴 ≠ ∅))
54biimprd 247 . . . . . . . 8 (𝐴 ∈ On → (𝐴 ≠ ∅ → 1o𝐴))
65adantr 480 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → 1o𝐴))
7 on0eln0 6306 . . . . . . . . 9 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
87adantl 481 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐵 ≠ ∅))
9 omword1 8366 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·o 𝐵))
109ex 412 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐴 ⊆ (𝐴 ·o 𝐵)))
118, 10sylbird 259 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ → 𝐴 ⊆ (𝐴 ·o 𝐵)))
126, 11anim12d 608 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (1o𝐴𝐴 ⊆ (𝐴 ·o 𝐵))))
13 sstr 3925 . . . . . 6 ((1o𝐴𝐴 ⊆ (𝐴 ·o 𝐵)) → 1o ⊆ (𝐴 ·o 𝐵))
1412, 13syl6 35 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → 1o ⊆ (𝐴 ·o 𝐵)))
151, 14syl5bir 242 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 = ∅ ∨ 𝐵 = ∅) → 1o ⊆ (𝐴 ·o 𝐵)))
16 omcl 8328 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
17 eloni 6261 . . . . 5 ((𝐴 ·o 𝐵) ∈ On → Ord (𝐴 ·o 𝐵))
18 ordge1n0 8290 . . . . 5 (Ord (𝐴 ·o 𝐵) → (1o ⊆ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅))
1916, 17, 183syl 18 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o ⊆ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅))
2015, 19sylibd 238 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) ≠ ∅))
2120necon4bd 2962 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ → (𝐴 = ∅ ∨ 𝐵 = ∅)))
22 oveq1 7262 . . . . . 6 (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅ ·o 𝐵))
23 om0r 8331 . . . . . 6 (𝐵 ∈ On → (∅ ·o 𝐵) = ∅)
2422, 23sylan9eqr 2801 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴 ·o 𝐵) = ∅)
2524ex 412 . . . 4 (𝐵 ∈ On → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
2625adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
27 oveq2 7263 . . . . . 6 (𝐵 = ∅ → (𝐴 ·o 𝐵) = (𝐴 ·o ∅))
28 om0 8309 . . . . . 6 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2927, 28sylan9eqr 2801 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅)
3029ex 412 . . . 4 (𝐴 ∈ On → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
3130adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
3226, 31jaod 855 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅))
3321, 32impbid 211 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wss 3883  c0 4253  Ord word 6250  Oncon0 6251  (class class class)co 7255  1oc1o 8260   ·o comu 8265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272
This theorem is referenced by:  om00el  8369  omlimcl  8371  oeoe  8392
  Copyright terms: Public domain W3C validator