MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om00 Structured version   Visualization version   GIF version

Theorem om00 8587
Description: The product of two ordinal numbers is zero iff at least one of them is zero. Proposition 8.22 of [TakeutiZaring] p. 64. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
om00 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))

Proof of Theorem om00
StepHypRef Expression
1 neanior 3025 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))
2 eloni 6362 . . . . . . . . . 10 (𝐴 ∈ On → Ord 𝐴)
3 ordge1n0 8506 . . . . . . . . . 10 (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))
42, 3syl 17 . . . . . . . . 9 (𝐴 ∈ On → (1o𝐴𝐴 ≠ ∅))
54biimprd 248 . . . . . . . 8 (𝐴 ∈ On → (𝐴 ≠ ∅ → 1o𝐴))
65adantr 480 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → 1o𝐴))
7 on0eln0 6409 . . . . . . . . 9 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
87adantl 481 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐵 ≠ ∅))
9 omword1 8585 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·o 𝐵))
109ex 412 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐴 ⊆ (𝐴 ·o 𝐵)))
118, 10sylbird 260 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ → 𝐴 ⊆ (𝐴 ·o 𝐵)))
126, 11anim12d 609 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (1o𝐴𝐴 ⊆ (𝐴 ·o 𝐵))))
13 sstr 3967 . . . . . 6 ((1o𝐴𝐴 ⊆ (𝐴 ·o 𝐵)) → 1o ⊆ (𝐴 ·o 𝐵))
1412, 13syl6 35 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → 1o ⊆ (𝐴 ·o 𝐵)))
151, 14biimtrrid 243 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 = ∅ ∨ 𝐵 = ∅) → 1o ⊆ (𝐴 ·o 𝐵)))
16 omcl 8548 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
17 eloni 6362 . . . . 5 ((𝐴 ·o 𝐵) ∈ On → Ord (𝐴 ·o 𝐵))
18 ordge1n0 8506 . . . . 5 (Ord (𝐴 ·o 𝐵) → (1o ⊆ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅))
1916, 17, 183syl 18 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o ⊆ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅))
2015, 19sylibd 239 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) ≠ ∅))
2120necon4bd 2952 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ → (𝐴 = ∅ ∨ 𝐵 = ∅)))
22 oveq1 7412 . . . . . 6 (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅ ·o 𝐵))
23 om0r 8551 . . . . . 6 (𝐵 ∈ On → (∅ ·o 𝐵) = ∅)
2422, 23sylan9eqr 2792 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴 ·o 𝐵) = ∅)
2524ex 412 . . . 4 (𝐵 ∈ On → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
2625adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
27 oveq2 7413 . . . . . 6 (𝐵 = ∅ → (𝐴 ·o 𝐵) = (𝐴 ·o ∅))
28 om0 8529 . . . . . 6 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2927, 28sylan9eqr 2792 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅)
3029ex 412 . . . 4 (𝐴 ∈ On → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
3130adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
3226, 31jaod 859 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅))
3321, 32impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wss 3926  c0 4308  Ord word 6351  Oncon0 6352  (class class class)co 7405  1oc1o 8473   ·o comu 8478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485
This theorem is referenced by:  om00el  8588  omlimcl  8590  oeoe  8611
  Copyright terms: Public domain W3C validator