MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om00 Structured version   Visualization version   GIF version

Theorem om00 8631
Description: The product of two ordinal numbers is zero iff at least one of them is zero. Proposition 8.22 of [TakeutiZaring] p. 64. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
om00 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))

Proof of Theorem om00
StepHypRef Expression
1 neanior 3041 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))
2 eloni 6405 . . . . . . . . . 10 (𝐴 ∈ On → Ord 𝐴)
3 ordge1n0 8550 . . . . . . . . . 10 (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))
42, 3syl 17 . . . . . . . . 9 (𝐴 ∈ On → (1o𝐴𝐴 ≠ ∅))
54biimprd 248 . . . . . . . 8 (𝐴 ∈ On → (𝐴 ≠ ∅ → 1o𝐴))
65adantr 480 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → 1o𝐴))
7 on0eln0 6451 . . . . . . . . 9 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
87adantl 481 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐵 ≠ ∅))
9 omword1 8629 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·o 𝐵))
109ex 412 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐴 ⊆ (𝐴 ·o 𝐵)))
118, 10sylbird 260 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ → 𝐴 ⊆ (𝐴 ·o 𝐵)))
126, 11anim12d 608 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (1o𝐴𝐴 ⊆ (𝐴 ·o 𝐵))))
13 sstr 4017 . . . . . 6 ((1o𝐴𝐴 ⊆ (𝐴 ·o 𝐵)) → 1o ⊆ (𝐴 ·o 𝐵))
1412, 13syl6 35 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → 1o ⊆ (𝐴 ·o 𝐵)))
151, 14biimtrrid 243 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 = ∅ ∨ 𝐵 = ∅) → 1o ⊆ (𝐴 ·o 𝐵)))
16 omcl 8592 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
17 eloni 6405 . . . . 5 ((𝐴 ·o 𝐵) ∈ On → Ord (𝐴 ·o 𝐵))
18 ordge1n0 8550 . . . . 5 (Ord (𝐴 ·o 𝐵) → (1o ⊆ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅))
1916, 17, 183syl 18 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o ⊆ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅))
2015, 19sylibd 239 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) ≠ ∅))
2120necon4bd 2966 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ → (𝐴 = ∅ ∨ 𝐵 = ∅)))
22 oveq1 7455 . . . . . 6 (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅ ·o 𝐵))
23 om0r 8595 . . . . . 6 (𝐵 ∈ On → (∅ ·o 𝐵) = ∅)
2422, 23sylan9eqr 2802 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴 ·o 𝐵) = ∅)
2524ex 412 . . . 4 (𝐵 ∈ On → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
2625adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
27 oveq2 7456 . . . . . 6 (𝐵 = ∅ → (𝐴 ·o 𝐵) = (𝐴 ·o ∅))
28 om0 8573 . . . . . 6 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2927, 28sylan9eqr 2802 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅)
3029ex 412 . . . 4 (𝐴 ∈ On → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
3130adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
3226, 31jaod 858 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅))
3321, 32impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wss 3976  c0 4352  Ord word 6394  Oncon0 6395  (class class class)co 7448  1oc1o 8515   ·o comu 8520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527
This theorem is referenced by:  om00el  8632  omlimcl  8634  oeoe  8655
  Copyright terms: Public domain W3C validator