MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om00 Structured version   Visualization version   GIF version

Theorem om00 8493
Description: The product of two ordinal numbers is zero iff at least one of them is zero. Proposition 8.22 of [TakeutiZaring] p. 64. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
om00 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))

Proof of Theorem om00
StepHypRef Expression
1 neanior 3018 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))
2 eloni 6317 . . . . . . . . . 10 (𝐴 ∈ On → Ord 𝐴)
3 ordge1n0 8412 . . . . . . . . . 10 (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))
42, 3syl 17 . . . . . . . . 9 (𝐴 ∈ On → (1o𝐴𝐴 ≠ ∅))
54biimprd 248 . . . . . . . 8 (𝐴 ∈ On → (𝐴 ≠ ∅ → 1o𝐴))
65adantr 480 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → 1o𝐴))
7 on0eln0 6364 . . . . . . . . 9 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
87adantl 481 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐵 ≠ ∅))
9 omword1 8491 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·o 𝐵))
109ex 412 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐴 ⊆ (𝐴 ·o 𝐵)))
118, 10sylbird 260 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ → 𝐴 ⊆ (𝐴 ·o 𝐵)))
126, 11anim12d 609 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (1o𝐴𝐴 ⊆ (𝐴 ·o 𝐵))))
13 sstr 3944 . . . . . 6 ((1o𝐴𝐴 ⊆ (𝐴 ·o 𝐵)) → 1o ⊆ (𝐴 ·o 𝐵))
1412, 13syl6 35 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → 1o ⊆ (𝐴 ·o 𝐵)))
151, 14biimtrrid 243 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 = ∅ ∨ 𝐵 = ∅) → 1o ⊆ (𝐴 ·o 𝐵)))
16 omcl 8454 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
17 eloni 6317 . . . . 5 ((𝐴 ·o 𝐵) ∈ On → Ord (𝐴 ·o 𝐵))
18 ordge1n0 8412 . . . . 5 (Ord (𝐴 ·o 𝐵) → (1o ⊆ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅))
1916, 17, 183syl 18 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o ⊆ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅))
2015, 19sylibd 239 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) ≠ ∅))
2120necon4bd 2945 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ → (𝐴 = ∅ ∨ 𝐵 = ∅)))
22 oveq1 7356 . . . . . 6 (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅ ·o 𝐵))
23 om0r 8457 . . . . . 6 (𝐵 ∈ On → (∅ ·o 𝐵) = ∅)
2422, 23sylan9eqr 2786 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴 ·o 𝐵) = ∅)
2524ex 412 . . . 4 (𝐵 ∈ On → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
2625adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
27 oveq2 7357 . . . . . 6 (𝐵 = ∅ → (𝐴 ·o 𝐵) = (𝐴 ·o ∅))
28 om0 8435 . . . . . 6 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2927, 28sylan9eqr 2786 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅)
3029ex 412 . . . 4 (𝐴 ∈ On → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
3130adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
3226, 31jaod 859 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅))
3321, 32impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wss 3903  c0 4284  Ord word 6306  Oncon0 6307  (class class class)co 7349  1oc1o 8381   ·o comu 8386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-omul 8393
This theorem is referenced by:  om00el  8494  omlimcl  8496  oeoe  8517
  Copyright terms: Public domain W3C validator