Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcc0 Structured version   Visualization version   GIF version

Theorem bcc0 40537
Description: The generalized binomial coefficient 𝐶 choose 𝐾 is zero iff 𝐶 is an integer between zero and (𝐾 − 1) inclusive. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccval.c (𝜑𝐶 ∈ ℂ)
bccval.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bcc0 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))

Proof of Theorem bcc0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bccval.c . . . 4 (𝜑𝐶 ∈ ℂ)
2 bccval.k . . . 4 (𝜑𝐾 ∈ ℕ0)
31, 2bccval 40535 . . 3 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
43eqeq1d 2828 . 2 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ ((𝐶 FallFac 𝐾) / (!‘𝐾)) = 0))
5 fallfaccl 15360 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) ∈ ℂ)
61, 2, 5syl2anc 584 . . 3 (𝜑 → (𝐶 FallFac 𝐾) ∈ ℂ)
7 faccl 13633 . . . . 5 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
82, 7syl 17 . . . 4 (𝜑 → (!‘𝐾) ∈ ℕ)
98nncnd 11643 . . 3 (𝜑 → (!‘𝐾) ∈ ℂ)
10 facne0 13636 . . . 4 (𝐾 ∈ ℕ0 → (!‘𝐾) ≠ 0)
112, 10syl 17 . . 3 (𝜑 → (!‘𝐾) ≠ 0)
126, 9, 11diveq0ad 11415 . 2 (𝜑 → (((𝐶 FallFac 𝐾) / (!‘𝐾)) = 0 ↔ (𝐶 FallFac 𝐾) = 0))
13 fallfacval 15353 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) = ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘))
141, 2, 13syl2anc 584 . . . 4 (𝜑 → (𝐶 FallFac 𝐾) = ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘))
1514eqeq1d 2828 . . 3 (𝜑 → ((𝐶 FallFac 𝐾) = 0 ↔ ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
16 elfzuz3 12895 . . . . . . 7 (𝐶 ∈ (0...(𝐾 − 1)) → (𝐾 − 1) ∈ (ℤ𝐶))
1716adantl 482 . . . . . 6 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈ (ℤ𝐶))
18 nn0uz 12269 . . . . . . 7 0 = (ℤ‘0)
19 elfznn0 12990 . . . . . . . 8 (𝐶 ∈ (0...(𝐾 − 1)) → 𝐶 ∈ ℕ0)
2019adantl 482 . . . . . . 7 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → 𝐶 ∈ ℕ0)
211ad2antrr 722 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
22 nn0cn 11896 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2322adantl 482 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
2421, 23subcld 10986 . . . . . . 7 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
251ad2antrr 722 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → 𝐶 ∈ ℂ)
26 eqcom 2833 . . . . . . . . . 10 (𝑘 = 𝐶𝐶 = 𝑘)
2726biimpi 217 . . . . . . . . 9 (𝑘 = 𝐶𝐶 = 𝑘)
2827adantl 482 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → 𝐶 = 𝑘)
2925, 28subeq0bd 11055 . . . . . . 7 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → (𝐶𝑘) = 0)
3018, 20, 24, 29fprodeq0 15319 . . . . . 6 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ (𝐾 − 1) ∈ (ℤ𝐶)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0)
3117, 30mpdan 683 . . . . 5 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0)
3231ex 413 . . . 4 (𝜑 → (𝐶 ∈ (0...(𝐾 − 1)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
33 fzfid 13331 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → (0...(𝐾 − 1)) ∈ Fin)
341ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶 ∈ ℂ)
35 elfznn0 12990 . . . . . . . . . 10 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
3635nn0cnd 11946 . . . . . . . . 9 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℂ)
3736adantl 482 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ)
3834, 37subcld 10986 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐶𝑘) ∈ ℂ)
39 nelne2 3120 . . . . . . . . . . 11 ((𝑘 ∈ (0...(𝐾 − 1)) ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → 𝑘𝐶)
4039necomd 3076 . . . . . . . . . 10 ((𝑘 ∈ (0...(𝐾 − 1)) ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4140ancoms 459 . . . . . . . . 9 ((¬ 𝐶 ∈ (0...(𝐾 − 1)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4241adantll 710 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4334, 37, 42subne0d 10995 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐶𝑘) ≠ 0)
4433, 38, 43fprodn0 15323 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) ≠ 0)
4544ex 413 . . . . 5 (𝜑 → (¬ 𝐶 ∈ (0...(𝐾 − 1)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) ≠ 0))
4645necon4bd 3041 . . . 4 (𝜑 → (∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0 → 𝐶 ∈ (0...(𝐾 − 1))))
4732, 46impbid 213 . . 3 (𝜑 → (𝐶 ∈ (0...(𝐾 − 1)) ↔ ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
4815, 47bitr4d 283 . 2 (𝜑 → ((𝐶 FallFac 𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))
494, 12, 483bitrd 306 1 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3021  cfv 6352  (class class class)co 7148  cc 10524  0cc0 10526  1c1 10527  cmin 10859   / cdiv 11286  cn 11627  0cn0 11886  cuz 12232  ...cfz 12882  !cfa 13623  cprod 15249   FallFac cfallfac 15348  C𝑐cbcc 40533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-fz 12883  df-fzo 13024  df-seq 13360  df-exp 13420  df-fac 13624  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-prod 15250  df-fallfac 15351  df-bcc 40534
This theorem is referenced by:  bccbc  40542  binomcxplemnn0  40546  binomcxplemfrat  40548  binomcxplemradcnv  40549
  Copyright terms: Public domain W3C validator