Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcc0 Structured version   Visualization version   GIF version

Theorem bcc0 44438
Description: The generalized binomial coefficient 𝐶 choose 𝐾 is zero iff 𝐶 is an integer between zero and (𝐾 − 1) inclusive. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccval.c (𝜑𝐶 ∈ ℂ)
bccval.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bcc0 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))

Proof of Theorem bcc0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bccval.c . . . 4 (𝜑𝐶 ∈ ℂ)
2 bccval.k . . . 4 (𝜑𝐾 ∈ ℕ0)
31, 2bccval 44436 . . 3 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
43eqeq1d 2733 . 2 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ ((𝐶 FallFac 𝐾) / (!‘𝐾)) = 0))
5 fallfaccl 15929 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) ∈ ℂ)
61, 2, 5syl2anc 584 . . 3 (𝜑 → (𝐶 FallFac 𝐾) ∈ ℂ)
7 faccl 14196 . . . . 5 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
82, 7syl 17 . . . 4 (𝜑 → (!‘𝐾) ∈ ℕ)
98nncnd 12147 . . 3 (𝜑 → (!‘𝐾) ∈ ℂ)
10 facne0 14199 . . . 4 (𝐾 ∈ ℕ0 → (!‘𝐾) ≠ 0)
112, 10syl 17 . . 3 (𝜑 → (!‘𝐾) ≠ 0)
126, 9, 11diveq0ad 11913 . 2 (𝜑 → (((𝐶 FallFac 𝐾) / (!‘𝐾)) = 0 ↔ (𝐶 FallFac 𝐾) = 0))
13 fallfacval 15922 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) = ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘))
141, 2, 13syl2anc 584 . . . 4 (𝜑 → (𝐶 FallFac 𝐾) = ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘))
1514eqeq1d 2733 . . 3 (𝜑 → ((𝐶 FallFac 𝐾) = 0 ↔ ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
16 elfzuz3 13427 . . . . . . 7 (𝐶 ∈ (0...(𝐾 − 1)) → (𝐾 − 1) ∈ (ℤ𝐶))
1716adantl 481 . . . . . 6 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈ (ℤ𝐶))
18 nn0uz 12780 . . . . . . 7 0 = (ℤ‘0)
19 elfznn0 13526 . . . . . . . 8 (𝐶 ∈ (0...(𝐾 − 1)) → 𝐶 ∈ ℕ0)
2019adantl 481 . . . . . . 7 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → 𝐶 ∈ ℕ0)
211ad2antrr 726 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
22 nn0cn 12397 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2322adantl 481 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
2421, 23subcld 11478 . . . . . . 7 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
251ad2antrr 726 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → 𝐶 ∈ ℂ)
26 eqcom 2738 . . . . . . . . . 10 (𝑘 = 𝐶𝐶 = 𝑘)
2726biimpi 216 . . . . . . . . 9 (𝑘 = 𝐶𝐶 = 𝑘)
2827adantl 481 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → 𝐶 = 𝑘)
2925, 28subeq0bd 11549 . . . . . . 7 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → (𝐶𝑘) = 0)
3018, 20, 24, 29fprodeq0 15888 . . . . . 6 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ (𝐾 − 1) ∈ (ℤ𝐶)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0)
3117, 30mpdan 687 . . . . 5 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0)
3231ex 412 . . . 4 (𝜑 → (𝐶 ∈ (0...(𝐾 − 1)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
33 fzfid 13886 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → (0...(𝐾 − 1)) ∈ Fin)
341ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶 ∈ ℂ)
35 elfznn0 13526 . . . . . . . . . 10 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
3635nn0cnd 12450 . . . . . . . . 9 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℂ)
3736adantl 481 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ)
3834, 37subcld 11478 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐶𝑘) ∈ ℂ)
39 nelne2 3026 . . . . . . . . . . 11 ((𝑘 ∈ (0...(𝐾 − 1)) ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → 𝑘𝐶)
4039necomd 2983 . . . . . . . . . 10 ((𝑘 ∈ (0...(𝐾 − 1)) ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4140ancoms 458 . . . . . . . . 9 ((¬ 𝐶 ∈ (0...(𝐾 − 1)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4241adantll 714 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4334, 37, 42subne0d 11487 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐶𝑘) ≠ 0)
4433, 38, 43fprodn0 15892 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) ≠ 0)
4544ex 412 . . . . 5 (𝜑 → (¬ 𝐶 ∈ (0...(𝐾 − 1)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) ≠ 0))
4645necon4bd 2948 . . . 4 (𝜑 → (∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0 → 𝐶 ∈ (0...(𝐾 − 1))))
4732, 46impbid 212 . . 3 (𝜑 → (𝐶 ∈ (0...(𝐾 − 1)) ↔ ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
4815, 47bitr4d 282 . 2 (𝜑 → ((𝐶 FallFac 𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))
494, 12, 483bitrd 305 1 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  cfv 6487  (class class class)co 7352  cc 11010  0cc0 11012  1c1 11013  cmin 11350   / cdiv 11780  cn 12131  0cn0 12387  cuz 12738  ...cfz 13413  !cfa 14186  cprod 15816   FallFac cfallfac 15917  C𝑐cbcc 44434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9332  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-n0 12388  df-z 12475  df-uz 12739  df-rp 12897  df-fz 13414  df-fzo 13561  df-seq 13915  df-exp 13975  df-fac 14187  df-hash 14244  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-clim 15401  df-prod 15817  df-fallfac 15920  df-bcc 44435
This theorem is referenced by:  bccbc  44443  binomcxplemnn0  44447  binomcxplemfrat  44449  binomcxplemradcnv  44450
  Copyright terms: Public domain W3C validator