Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcc0 Structured version   Visualization version   GIF version

Theorem bcc0 43588
Description: The generalized binomial coefficient 𝐶 choose 𝐾 is zero iff 𝐶 is an integer between zero and (𝐾 − 1) inclusive. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccval.c (𝜑𝐶 ∈ ℂ)
bccval.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bcc0 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))

Proof of Theorem bcc0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bccval.c . . . 4 (𝜑𝐶 ∈ ℂ)
2 bccval.k . . . 4 (𝜑𝐾 ∈ ℕ0)
31, 2bccval 43586 . . 3 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
43eqeq1d 2726 . 2 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ ((𝐶 FallFac 𝐾) / (!‘𝐾)) = 0))
5 fallfaccl 15957 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) ∈ ℂ)
61, 2, 5syl2anc 583 . . 3 (𝜑 → (𝐶 FallFac 𝐾) ∈ ℂ)
7 faccl 14240 . . . . 5 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
82, 7syl 17 . . . 4 (𝜑 → (!‘𝐾) ∈ ℕ)
98nncnd 12225 . . 3 (𝜑 → (!‘𝐾) ∈ ℂ)
10 facne0 14243 . . . 4 (𝐾 ∈ ℕ0 → (!‘𝐾) ≠ 0)
112, 10syl 17 . . 3 (𝜑 → (!‘𝐾) ≠ 0)
126, 9, 11diveq0ad 11997 . 2 (𝜑 → (((𝐶 FallFac 𝐾) / (!‘𝐾)) = 0 ↔ (𝐶 FallFac 𝐾) = 0))
13 fallfacval 15950 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) = ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘))
141, 2, 13syl2anc 583 . . . 4 (𝜑 → (𝐶 FallFac 𝐾) = ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘))
1514eqeq1d 2726 . . 3 (𝜑 → ((𝐶 FallFac 𝐾) = 0 ↔ ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
16 elfzuz3 13495 . . . . . . 7 (𝐶 ∈ (0...(𝐾 − 1)) → (𝐾 − 1) ∈ (ℤ𝐶))
1716adantl 481 . . . . . 6 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈ (ℤ𝐶))
18 nn0uz 12861 . . . . . . 7 0 = (ℤ‘0)
19 elfznn0 13591 . . . . . . . 8 (𝐶 ∈ (0...(𝐾 − 1)) → 𝐶 ∈ ℕ0)
2019adantl 481 . . . . . . 7 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → 𝐶 ∈ ℕ0)
211ad2antrr 723 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
22 nn0cn 12479 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2322adantl 481 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
2421, 23subcld 11568 . . . . . . 7 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
251ad2antrr 723 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → 𝐶 ∈ ℂ)
26 eqcom 2731 . . . . . . . . . 10 (𝑘 = 𝐶𝐶 = 𝑘)
2726biimpi 215 . . . . . . . . 9 (𝑘 = 𝐶𝐶 = 𝑘)
2827adantl 481 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → 𝐶 = 𝑘)
2925, 28subeq0bd 11637 . . . . . . 7 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → (𝐶𝑘) = 0)
3018, 20, 24, 29fprodeq0 15916 . . . . . 6 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ (𝐾 − 1) ∈ (ℤ𝐶)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0)
3117, 30mpdan 684 . . . . 5 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0)
3231ex 412 . . . 4 (𝜑 → (𝐶 ∈ (0...(𝐾 − 1)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
33 fzfid 13935 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → (0...(𝐾 − 1)) ∈ Fin)
341ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶 ∈ ℂ)
35 elfznn0 13591 . . . . . . . . . 10 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
3635nn0cnd 12531 . . . . . . . . 9 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℂ)
3736adantl 481 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ)
3834, 37subcld 11568 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐶𝑘) ∈ ℂ)
39 nelne2 3032 . . . . . . . . . . 11 ((𝑘 ∈ (0...(𝐾 − 1)) ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → 𝑘𝐶)
4039necomd 2988 . . . . . . . . . 10 ((𝑘 ∈ (0...(𝐾 − 1)) ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4140ancoms 458 . . . . . . . . 9 ((¬ 𝐶 ∈ (0...(𝐾 − 1)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4241adantll 711 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4334, 37, 42subne0d 11577 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐶𝑘) ≠ 0)
4433, 38, 43fprodn0 15920 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) ≠ 0)
4544ex 412 . . . . 5 (𝜑 → (¬ 𝐶 ∈ (0...(𝐾 − 1)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) ≠ 0))
4645necon4bd 2952 . . . 4 (𝜑 → (∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0 → 𝐶 ∈ (0...(𝐾 − 1))))
4732, 46impbid 211 . . 3 (𝜑 → (𝐶 ∈ (0...(𝐾 − 1)) ↔ ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
4815, 47bitr4d 282 . 2 (𝜑 → ((𝐶 FallFac 𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))
494, 12, 483bitrd 305 1 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2932  cfv 6533  (class class class)co 7401  cc 11104  0cc0 11106  1c1 11107  cmin 11441   / cdiv 11868  cn 12209  0cn0 12469  cuz 12819  ...cfz 13481  !cfa 14230  cprod 15846   FallFac cfallfac 15945  C𝑐cbcc 43584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-seq 13964  df-exp 14025  df-fac 14231  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-prod 15847  df-fallfac 15948  df-bcc 43585
This theorem is referenced by:  bccbc  43593  binomcxplemnn0  43597  binomcxplemfrat  43599  binomcxplemradcnv  43600
  Copyright terms: Public domain W3C validator