Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcc0 Structured version   Visualization version   GIF version

Theorem bcc0 44297
Description: The generalized binomial coefficient 𝐶 choose 𝐾 is zero iff 𝐶 is an integer between zero and (𝐾 − 1) inclusive. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccval.c (𝜑𝐶 ∈ ℂ)
bccval.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bcc0 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))

Proof of Theorem bcc0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bccval.c . . . 4 (𝜑𝐶 ∈ ℂ)
2 bccval.k . . . 4 (𝜑𝐾 ∈ ℕ0)
31, 2bccval 44295 . . 3 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
43eqeq1d 2736 . 2 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ ((𝐶 FallFac 𝐾) / (!‘𝐾)) = 0))
5 fallfaccl 16021 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) ∈ ℂ)
61, 2, 5syl2anc 584 . . 3 (𝜑 → (𝐶 FallFac 𝐾) ∈ ℂ)
7 faccl 14291 . . . . 5 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
82, 7syl 17 . . . 4 (𝜑 → (!‘𝐾) ∈ ℕ)
98nncnd 12249 . . 3 (𝜑 → (!‘𝐾) ∈ ℂ)
10 facne0 14294 . . . 4 (𝐾 ∈ ℕ0 → (!‘𝐾) ≠ 0)
112, 10syl 17 . . 3 (𝜑 → (!‘𝐾) ≠ 0)
126, 9, 11diveq0ad 12020 . 2 (𝜑 → (((𝐶 FallFac 𝐾) / (!‘𝐾)) = 0 ↔ (𝐶 FallFac 𝐾) = 0))
13 fallfacval 16014 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) = ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘))
141, 2, 13syl2anc 584 . . . 4 (𝜑 → (𝐶 FallFac 𝐾) = ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘))
1514eqeq1d 2736 . . 3 (𝜑 → ((𝐶 FallFac 𝐾) = 0 ↔ ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
16 elfzuz3 13528 . . . . . . 7 (𝐶 ∈ (0...(𝐾 − 1)) → (𝐾 − 1) ∈ (ℤ𝐶))
1716adantl 481 . . . . . 6 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈ (ℤ𝐶))
18 nn0uz 12887 . . . . . . 7 0 = (ℤ‘0)
19 elfznn0 13627 . . . . . . . 8 (𝐶 ∈ (0...(𝐾 − 1)) → 𝐶 ∈ ℕ0)
2019adantl 481 . . . . . . 7 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → 𝐶 ∈ ℕ0)
211ad2antrr 726 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
22 nn0cn 12504 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2322adantl 481 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
2421, 23subcld 11587 . . . . . . 7 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
251ad2antrr 726 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → 𝐶 ∈ ℂ)
26 eqcom 2741 . . . . . . . . . 10 (𝑘 = 𝐶𝐶 = 𝑘)
2726biimpi 216 . . . . . . . . 9 (𝑘 = 𝐶𝐶 = 𝑘)
2827adantl 481 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → 𝐶 = 𝑘)
2925, 28subeq0bd 11656 . . . . . . 7 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → (𝐶𝑘) = 0)
3018, 20, 24, 29fprodeq0 15980 . . . . . 6 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ (𝐾 − 1) ∈ (ℤ𝐶)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0)
3117, 30mpdan 687 . . . . 5 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0)
3231ex 412 . . . 4 (𝜑 → (𝐶 ∈ (0...(𝐾 − 1)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
33 fzfid 13981 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → (0...(𝐾 − 1)) ∈ Fin)
341ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶 ∈ ℂ)
35 elfznn0 13627 . . . . . . . . . 10 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
3635nn0cnd 12557 . . . . . . . . 9 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℂ)
3736adantl 481 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ)
3834, 37subcld 11587 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐶𝑘) ∈ ℂ)
39 nelne2 3029 . . . . . . . . . . 11 ((𝑘 ∈ (0...(𝐾 − 1)) ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → 𝑘𝐶)
4039necomd 2986 . . . . . . . . . 10 ((𝑘 ∈ (0...(𝐾 − 1)) ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4140ancoms 458 . . . . . . . . 9 ((¬ 𝐶 ∈ (0...(𝐾 − 1)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4241adantll 714 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4334, 37, 42subne0d 11596 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐶𝑘) ≠ 0)
4433, 38, 43fprodn0 15984 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) ≠ 0)
4544ex 412 . . . . 5 (𝜑 → (¬ 𝐶 ∈ (0...(𝐾 − 1)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) ≠ 0))
4645necon4bd 2951 . . . 4 (𝜑 → (∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0 → 𝐶 ∈ (0...(𝐾 − 1))))
4732, 46impbid 212 . . 3 (𝜑 → (𝐶 ∈ (0...(𝐾 − 1)) ↔ ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
4815, 47bitr4d 282 . 2 (𝜑 → ((𝐶 FallFac 𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))
494, 12, 483bitrd 305 1 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  cfv 6528  (class class class)co 7400  cc 11120  0cc0 11122  1c1 11123  cmin 11459   / cdiv 11887  cn 12233  0cn0 12494  cuz 12845  ...cfz 13514  !cfa 14281  cprod 15908   FallFac cfallfac 16009  C𝑐cbcc 44293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-inf2 9648  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-sup 9449  df-oi 9517  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-n0 12495  df-z 12582  df-uz 12846  df-rp 13002  df-fz 13515  df-fzo 13662  df-seq 14010  df-exp 14070  df-fac 14282  df-hash 14339  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-clim 15493  df-prod 15909  df-fallfac 16012  df-bcc 44294
This theorem is referenced by:  bccbc  44302  binomcxplemnn0  44306  binomcxplemfrat  44308  binomcxplemradcnv  44309
  Copyright terms: Public domain W3C validator