Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcc0 Structured version   Visualization version   GIF version

Theorem bcc0 41480
Description: The generalized binomial coefficient 𝐶 choose 𝐾 is zero iff 𝐶 is an integer between zero and (𝐾 − 1) inclusive. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccval.c (𝜑𝐶 ∈ ℂ)
bccval.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bcc0 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))

Proof of Theorem bcc0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bccval.c . . . 4 (𝜑𝐶 ∈ ℂ)
2 bccval.k . . . 4 (𝜑𝐾 ∈ ℕ0)
31, 2bccval 41478 . . 3 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
43eqeq1d 2740 . 2 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ ((𝐶 FallFac 𝐾) / (!‘𝐾)) = 0))
5 fallfaccl 15455 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) ∈ ℂ)
61, 2, 5syl2anc 587 . . 3 (𝜑 → (𝐶 FallFac 𝐾) ∈ ℂ)
7 faccl 13728 . . . . 5 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
82, 7syl 17 . . . 4 (𝜑 → (!‘𝐾) ∈ ℕ)
98nncnd 11725 . . 3 (𝜑 → (!‘𝐾) ∈ ℂ)
10 facne0 13731 . . . 4 (𝐾 ∈ ℕ0 → (!‘𝐾) ≠ 0)
112, 10syl 17 . . 3 (𝜑 → (!‘𝐾) ≠ 0)
126, 9, 11diveq0ad 11497 . 2 (𝜑 → (((𝐶 FallFac 𝐾) / (!‘𝐾)) = 0 ↔ (𝐶 FallFac 𝐾) = 0))
13 fallfacval 15448 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) = ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘))
141, 2, 13syl2anc 587 . . . 4 (𝜑 → (𝐶 FallFac 𝐾) = ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘))
1514eqeq1d 2740 . . 3 (𝜑 → ((𝐶 FallFac 𝐾) = 0 ↔ ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
16 elfzuz3 12988 . . . . . . 7 (𝐶 ∈ (0...(𝐾 − 1)) → (𝐾 − 1) ∈ (ℤ𝐶))
1716adantl 485 . . . . . 6 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈ (ℤ𝐶))
18 nn0uz 12355 . . . . . . 7 0 = (ℤ‘0)
19 elfznn0 13084 . . . . . . . 8 (𝐶 ∈ (0...(𝐾 − 1)) → 𝐶 ∈ ℕ0)
2019adantl 485 . . . . . . 7 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → 𝐶 ∈ ℕ0)
211ad2antrr 726 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
22 nn0cn 11979 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2322adantl 485 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
2421, 23subcld 11068 . . . . . . 7 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
251ad2antrr 726 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → 𝐶 ∈ ℂ)
26 eqcom 2745 . . . . . . . . . 10 (𝑘 = 𝐶𝐶 = 𝑘)
2726biimpi 219 . . . . . . . . 9 (𝑘 = 𝐶𝐶 = 𝑘)
2827adantl 485 . . . . . . . 8 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → 𝐶 = 𝑘)
2925, 28subeq0bd 11137 . . . . . . 7 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 = 𝐶) → (𝐶𝑘) = 0)
3018, 20, 24, 29fprodeq0 15414 . . . . . 6 (((𝜑𝐶 ∈ (0...(𝐾 − 1))) ∧ (𝐾 − 1) ∈ (ℤ𝐶)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0)
3117, 30mpdan 687 . . . . 5 ((𝜑𝐶 ∈ (0...(𝐾 − 1))) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0)
3231ex 416 . . . 4 (𝜑 → (𝐶 ∈ (0...(𝐾 − 1)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
33 fzfid 13425 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → (0...(𝐾 − 1)) ∈ Fin)
341ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶 ∈ ℂ)
35 elfznn0 13084 . . . . . . . . . 10 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
3635nn0cnd 12031 . . . . . . . . 9 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℂ)
3736adantl 485 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ)
3834, 37subcld 11068 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐶𝑘) ∈ ℂ)
39 nelne2 3031 . . . . . . . . . . 11 ((𝑘 ∈ (0...(𝐾 − 1)) ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → 𝑘𝐶)
4039necomd 2989 . . . . . . . . . 10 ((𝑘 ∈ (0...(𝐾 − 1)) ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4140ancoms 462 . . . . . . . . 9 ((¬ 𝐶 ∈ (0...(𝐾 − 1)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4241adantll 714 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝐶𝑘)
4334, 37, 42subne0d 11077 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐶𝑘) ≠ 0)
4433, 38, 43fprodn0 15418 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ (0...(𝐾 − 1))) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) ≠ 0)
4544ex 416 . . . . 5 (𝜑 → (¬ 𝐶 ∈ (0...(𝐾 − 1)) → ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) ≠ 0))
4645necon4bd 2954 . . . 4 (𝜑 → (∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0 → 𝐶 ∈ (0...(𝐾 − 1))))
4732, 46impbid 215 . . 3 (𝜑 → (𝐶 ∈ (0...(𝐾 − 1)) ↔ ∏𝑘 ∈ (0...(𝐾 − 1))(𝐶𝑘) = 0))
4815, 47bitr4d 285 . 2 (𝜑 → ((𝐶 FallFac 𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))
494, 12, 483bitrd 308 1 (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wne 2934  cfv 6333  (class class class)co 7164  cc 10606  0cc0 10608  1c1 10609  cmin 10941   / cdiv 11368  cn 11709  0cn0 11969  cuz 12317  ...cfz 12974  !cfa 13718  cprod 15344   FallFac cfallfac 15443  C𝑐cbcc 41476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-sup 8972  df-oi 9040  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-n0 11970  df-z 12056  df-uz 12318  df-rp 12466  df-fz 12975  df-fzo 13118  df-seq 13454  df-exp 13515  df-fac 13719  df-hash 13776  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-clim 14928  df-prod 15345  df-fallfac 15446  df-bcc 41477
This theorem is referenced by:  bccbc  41485  binomcxplemnn0  41489  binomcxplemfrat  41491  binomcxplemradcnv  41492
  Copyright terms: Public domain W3C validator