![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phibndlem | Structured version Visualization version GIF version |
Description: Lemma for phibnd 16700. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
phibndlem | ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn 12864 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
2 | fzm1 13577 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘1) → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))) | |
3 | nnuz 12861 | . . . . . . . . 9 ⊢ ℕ = (ℤ≥‘1) | |
4 | 2, 3 | eleq2s 2851 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))) |
5 | 4 | biimpa 477 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)) |
6 | 5 | ord 862 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 = 𝑁)) |
7 | 1, 6 | sylan 580 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 = 𝑁)) |
8 | eluzelz 12828 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
9 | gcdid 16464 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁)) | |
10 | 8, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) = (abs‘𝑁)) |
11 | nnre 12215 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
12 | nnnn0 12475 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
13 | 12 | nn0ge0d 12531 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
14 | 11, 13 | absidd 15365 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁) |
15 | 1, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (abs‘𝑁) = 𝑁) |
16 | 10, 15 | eqtrd 2772 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) = 𝑁) |
17 | 1re 11210 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
18 | eluz2gt1 12900 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | |
19 | ltne 11307 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ≠ 1) | |
20 | 17, 18, 19 | sylancr 587 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≠ 1) |
21 | 16, 20 | eqnetrd 3008 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) ≠ 1) |
22 | oveq1 7412 | . . . . . . . 8 ⊢ (𝑥 = 𝑁 → (𝑥 gcd 𝑁) = (𝑁 gcd 𝑁)) | |
23 | 22 | neeq1d 3000 | . . . . . . 7 ⊢ (𝑥 = 𝑁 → ((𝑥 gcd 𝑁) ≠ 1 ↔ (𝑁 gcd 𝑁) ≠ 1)) |
24 | 21, 23 | syl5ibrcom 246 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1)) |
25 | 24 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1)) |
26 | 7, 25 | syld 47 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → (𝑥 gcd 𝑁) ≠ 1)) |
27 | 26 | necon4bd 2960 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
28 | 27 | ralrimiva 3146 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
29 | rabss 4068 | . 2 ⊢ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) ↔ ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) | |
30 | 28, 29 | sylibr 233 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 {crab 3432 ⊆ wss 3947 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 ℝcr 11105 1c1 11107 < clt 11244 − cmin 11440 ℕcn 12208 2c2 12263 ℤcz 12554 ℤ≥cuz 12818 ...cfz 13480 abscabs 15177 gcd cgcd 16431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-dvds 16194 df-gcd 16432 |
This theorem is referenced by: phibnd 16700 dfphi2 16703 |
Copyright terms: Public domain | W3C validator |