MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phibndlem Structured version   Visualization version   GIF version

Theorem phibndlem 16740
Description: Lemma for phibnd 16741. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phibndlem (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
Distinct variable group:   𝑥,𝑁

Proof of Theorem phibndlem
StepHypRef Expression
1 eluz2nn 12847 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 fzm1 13568 . . . . . . . . 9 (𝑁 ∈ (ℤ‘1) → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)))
3 nnuz 12836 . . . . . . . . 9 ℕ = (ℤ‘1)
42, 3eleq2s 2846 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)))
54biimpa 476 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))
65ord 864 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 = 𝑁))
71, 6sylan 580 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 = 𝑁))
8 eluzelz 12803 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
9 gcdid 16497 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁))
108, 9syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) = (abs‘𝑁))
11 nnre 12193 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
12 nnnn0 12449 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1312nn0ge0d 12506 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
1411, 13absidd 15389 . . . . . . . . . 10 (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁)
151, 14syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (abs‘𝑁) = 𝑁)
1610, 15eqtrd 2764 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) = 𝑁)
17 1re 11174 . . . . . . . . 9 1 ∈ ℝ
18 eluz2gt1 12879 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
19 ltne 11271 . . . . . . . . 9 ((1 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ≠ 1)
2017, 18, 19sylancr 587 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
2116, 20eqnetrd 2992 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) ≠ 1)
22 oveq1 7394 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 gcd 𝑁) = (𝑁 gcd 𝑁))
2322neeq1d 2984 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 gcd 𝑁) ≠ 1 ↔ (𝑁 gcd 𝑁) ≠ 1))
2421, 23syl5ibrcom 247 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1))
2524adantr 480 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1))
267, 25syld 47 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → (𝑥 gcd 𝑁) ≠ 1))
2726necon4bd 2945 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
2827ralrimiva 3125 . 2 (𝑁 ∈ (ℤ‘2) → ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
29 rabss 4035 . 2 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) ↔ ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3028, 29sylibr 234 1 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  1c1 11069   < clt 11208  cmin 11405  cn 12186  2c2 12241  cz 12529  cuz 12793  ...cfz 13468  abscabs 15200   gcd cgcd 16464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465
This theorem is referenced by:  phibnd  16741  dfphi2  16744
  Copyright terms: Public domain W3C validator