| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phibndlem | Structured version Visualization version GIF version | ||
| Description: Lemma for phibnd 16682. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| Ref | Expression |
|---|---|
| phibndlem | ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn 12786 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 2 | fzm1 13507 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘1) → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))) | |
| 3 | nnuz 12775 | . . . . . . . . 9 ⊢ ℕ = (ℤ≥‘1) | |
| 4 | 2, 3 | eleq2s 2849 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))) |
| 5 | 4 | biimpa 476 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)) |
| 6 | 5 | ord 864 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 = 𝑁)) |
| 7 | 1, 6 | sylan 580 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 = 𝑁)) |
| 8 | eluzelz 12742 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
| 9 | gcdid 16438 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁)) | |
| 10 | 8, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) = (abs‘𝑁)) |
| 11 | nnre 12132 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 12 | nnnn0 12388 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 13 | 12 | nn0ge0d 12445 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
| 14 | 11, 13 | absidd 15330 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁) |
| 15 | 1, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (abs‘𝑁) = 𝑁) |
| 16 | 10, 15 | eqtrd 2766 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) = 𝑁) |
| 17 | 1re 11112 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 18 | eluz2gt1 12818 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | |
| 19 | ltne 11210 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ≠ 1) | |
| 20 | 17, 18, 19 | sylancr 587 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≠ 1) |
| 21 | 16, 20 | eqnetrd 2995 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) ≠ 1) |
| 22 | oveq1 7353 | . . . . . . . 8 ⊢ (𝑥 = 𝑁 → (𝑥 gcd 𝑁) = (𝑁 gcd 𝑁)) | |
| 23 | 22 | neeq1d 2987 | . . . . . . 7 ⊢ (𝑥 = 𝑁 → ((𝑥 gcd 𝑁) ≠ 1 ↔ (𝑁 gcd 𝑁) ≠ 1)) |
| 24 | 21, 23 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1)) |
| 25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1)) |
| 26 | 7, 25 | syld 47 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → (𝑥 gcd 𝑁) ≠ 1)) |
| 27 | 26 | necon4bd 2948 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
| 28 | 27 | ralrimiva 3124 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
| 29 | rabss 4022 | . 2 ⊢ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) ↔ ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) | |
| 30 | 28, 29 | sylibr 234 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 {crab 3395 ⊆ wss 3902 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 1c1 11007 < clt 11146 − cmin 11344 ℕcn 12125 2c2 12180 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 abscabs 15141 gcd cgcd 16405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 |
| This theorem is referenced by: phibnd 16682 dfphi2 16685 |
| Copyright terms: Public domain | W3C validator |