MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodcl2lem Structured version   Visualization version   GIF version

Theorem fprodcl2lem 15890
Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodcllem.1 (πœ‘ β†’ 𝑆 βŠ† β„‚)
fprodcllem.2 ((πœ‘ ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) β†’ (π‘₯ Β· 𝑦) ∈ 𝑆)
fprodcllem.3 (πœ‘ β†’ 𝐴 ∈ Fin)
fprodcllem.4 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ 𝑆)
fprodcl2lem.5 (πœ‘ β†’ 𝐴 β‰  βˆ…)
Assertion
Ref Expression
fprodcl2lem (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 𝐡 ∈ 𝑆)
Distinct variable groups:   𝐴,π‘˜,π‘₯,𝑦   π‘₯,𝐡,𝑦   πœ‘,π‘˜,π‘₯,𝑦   𝑆,π‘˜,π‘₯,𝑦
Allowed substitution hint:   𝐡(π‘˜)

Proof of Theorem fprodcl2lem
Dummy variables 𝑓 π‘š are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodcl2lem.5 . . . 4 (πœ‘ β†’ 𝐴 β‰  βˆ…)
21a1d 25 . . 3 (πœ‘ β†’ (Β¬ βˆπ‘˜ ∈ 𝐴 𝐡 ∈ 𝑆 β†’ 𝐴 β‰  βˆ…))
32necon4bd 2960 . 2 (πœ‘ β†’ (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 𝐡 ∈ 𝑆))
4 prodfc 15885 . . . . . . 7 βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = βˆπ‘˜ ∈ 𝐴 𝐡
5 fveq2 6888 . . . . . . . 8 (π‘š = (π‘“β€˜π‘₯) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘₯)))
6 simprl 769 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (β™―β€˜π΄) ∈ β„•)
7 simprr 771 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)
8 fprodcllem.1 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑆 βŠ† β„‚)
98adantr 481 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝑆 βŠ† β„‚)
10 fprodcllem.4 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ 𝑆)
119, 10sseldd 3982 . . . . . . . . . . 11 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
1211fmpttd 7111 . . . . . . . . . 10 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
1312ffvelcdmda 7083 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) ∈ β„‚)
1413adantlr 713 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) ∈ β„‚)
15 f1of 6830 . . . . . . . . . 10 (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
1615ad2antll 727 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
17 fvco3 6987 . . . . . . . . 9 ((𝑓:(1...(β™―β€˜π΄))⟢𝐴 ∧ π‘₯ ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘₯) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘₯)))
1816, 17sylan 580 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘₯ ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘₯) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘₯)))
195, 6, 7, 14, 18fprod 15881 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)))
204, 19eqtr3id 2786 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)))
21 nnuz 12861 . . . . . . . 8 β„• = (β„€β‰₯β€˜1)
226, 21eleqtrdi 2843 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜1))
2310fmpttd 7111 . . . . . . . . 9 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆπ‘†)
24 fco 6738 . . . . . . . . 9 (((π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆπ‘† ∧ 𝑓:(1...(β™―β€˜π΄))⟢𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆπ‘†)
2523, 16, 24syl2an2r 683 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆπ‘†)
2625ffvelcdmda 7083 . . . . . . 7 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘₯ ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘₯) ∈ 𝑆)
27 fprodcllem.2 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) β†’ (π‘₯ Β· 𝑦) ∈ 𝑆)
2827adantlr 713 . . . . . . 7 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) β†’ (π‘₯ Β· 𝑦) ∈ 𝑆)
2922, 26, 28seqcl 13984 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)) ∈ 𝑆)
3020, 29eqeltrd 2833 . . . . 5 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘˜ ∈ 𝐴 𝐡 ∈ 𝑆)
3130expr 457 . . . 4 ((πœ‘ ∧ (β™―β€˜π΄) ∈ β„•) β†’ (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ βˆπ‘˜ ∈ 𝐴 𝐡 ∈ 𝑆))
3231exlimdv 1936 . . 3 ((πœ‘ ∧ (β™―β€˜π΄) ∈ β„•) β†’ (βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ βˆπ‘˜ ∈ 𝐴 𝐡 ∈ 𝑆))
3332expimpd 454 . 2 (πœ‘ β†’ (((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴) β†’ βˆπ‘˜ ∈ 𝐴 𝐡 ∈ 𝑆))
34 fprodcllem.3 . . 3 (πœ‘ β†’ 𝐴 ∈ Fin)
35 fz1f1o 15652 . . 3 (𝐴 ∈ Fin β†’ (𝐴 = βˆ… ∨ ((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)))
3634, 35syl 17 . 2 (πœ‘ β†’ (𝐴 = βˆ… ∨ ((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)))
373, 33, 36mpjaod 858 1 (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 𝐡 ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∨ wo 845   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940   βŠ† wss 3947  βˆ…c0 4321   ↦ cmpt 5230   ∘ ccom 5679  βŸΆwf 6536  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  β„‚cc 11104  1c1 11107   Β· cmul 11111  β„•cn 12208  β„€β‰₯cuz 12818  ...cfz 13480  seqcseq 13962  β™―chash 14286  βˆcprod 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-prod 15846
This theorem is referenced by:  fprodcllem  15891
  Copyright terms: Public domain W3C validator