| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnsqf | Structured version Visualization version GIF version | ||
| Description: Two ways to say that a number is not squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| Ref | Expression |
|---|---|
| isnsqf | ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn 12354 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 2 | neg1ne0 12356 | . . . . . 6 ⊢ -1 ≠ 0 | |
| 3 | prmdvdsfi 27069 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | |
| 4 | hashcl 14374 | . . . . . . . 8 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) | |
| 5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) |
| 6 | 5 | nn0zd 12614 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℤ) |
| 7 | expne0i 14112 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℤ) → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) ≠ 0) | |
| 8 | 1, 2, 6, 7 | mp3an12i 1467 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) ≠ 0) |
| 9 | iffalse 4509 | . . . . . 6 ⊢ (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | |
| 10 | 9 | neeq1d 2991 | . . . . 5 ⊢ (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → (if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) ≠ 0 ↔ (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) ≠ 0)) |
| 11 | 8, 10 | syl5ibrcom 247 | . . . 4 ⊢ (𝐴 ∈ ℕ → (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) ≠ 0)) |
| 12 | muval 27094 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | |
| 13 | 12 | neeq1d 2991 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) ≠ 0)) |
| 14 | 11, 13 | sylibrd 259 | . . 3 ⊢ (𝐴 ∈ ℕ → (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → (μ‘𝐴) ≠ 0)) |
| 15 | 14 | necon4bd 2952 | . 2 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
| 16 | iftrue 4506 | . . 3 ⊢ (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0) | |
| 17 | 12 | eqeq1d 2737 | . . 3 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0)) |
| 18 | 16, 17 | imbitrrid 246 | . 2 ⊢ (𝐴 ∈ ℕ → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → (μ‘𝐴) = 0)) |
| 19 | 15, 18 | impbid 212 | 1 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {crab 3415 ifcif 4500 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 ℂcc 11127 0cc0 11129 1c1 11130 -cneg 11467 ℕcn 12240 2c2 12295 ℕ0cn0 12501 ℤcz 12588 ↑cexp 14079 ♯chash 14348 ∥ cdvds 16272 ℙcprime 16690 μcmu 27057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-seq 14020 df-exp 14080 df-hash 14349 df-dvds 16273 df-prm 16691 df-mu 27063 |
| This theorem is referenced by: issqf 27098 dvdssqf 27100 mumullem1 27141 |
| Copyright terms: Public domain | W3C validator |