MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsqf Structured version   Visualization version   GIF version

Theorem isnsqf 27072
Description: Two ways to say that a number is not squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
isnsqf (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
Distinct variable group:   𝐴,𝑝

Proof of Theorem isnsqf
StepHypRef Expression
1 neg1cn 12110 . . . . . 6 -1 ∈ ℂ
2 neg1ne0 12112 . . . . . 6 -1 ≠ 0
3 prmdvdsfi 27044 . . . . . . . 8 (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
4 hashcl 14263 . . . . . . . 8 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
53, 4syl 17 . . . . . . 7 (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
65nn0zd 12494 . . . . . 6 (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℤ)
7 expne0i 14001 . . . . . 6 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℤ) → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) ≠ 0)
81, 2, 6, 7mp3an12i 1467 . . . . 5 (𝐴 ∈ ℕ → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) ≠ 0)
9 iffalse 4481 . . . . . 6 (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
109neeq1d 2987 . . . . 5 (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → (if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) ≠ 0 ↔ (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) ≠ 0))
118, 10syl5ibrcom 247 . . . 4 (𝐴 ∈ ℕ → (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) ≠ 0))
12 muval 27069 . . . . 5 (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
1312neeq1d 2987 . . . 4 (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) ≠ 0))
1411, 13sylibrd 259 . . 3 (𝐴 ∈ ℕ → (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → (μ‘𝐴) ≠ 0))
1514necon4bd 2948 . 2 (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
16 iftrue 4478 . . 3 (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0)
1712eqeq1d 2733 . . 3 (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0))
1816, 17imbitrrid 246 . 2 (𝐴 ∈ ℕ → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → (μ‘𝐴) = 0))
1915, 18impbid 212 1 (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  ifcif 4472   class class class wbr 5089  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  0cc0 11006  1c1 11007  -cneg 11345  cn 12125  2c2 12180  0cn0 12381  cz 12468  cexp 13968  chash 14237  cdvds 16163  cprime 16582  μcmu 27032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909  df-exp 13969  df-hash 14238  df-dvds 16164  df-prm 16583  df-mu 27038
This theorem is referenced by:  issqf  27073  dvdssqf  27075  mumullem1  27116
  Copyright terms: Public domain W3C validator