Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . 4
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐹:𝐴–onto→𝐵) |
2 | | fof 6672 |
. . . 4
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
3 | 1, 2 | syl 17 |
. . 3
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐹:𝐴⟶𝐵) |
4 | | domnsym 8839 |
. . . . . . 7
⊢ (𝐵 ≼ (𝐴 ∖ {𝑦}) → ¬ (𝐴 ∖ {𝑦}) ≺ 𝐵) |
5 | | simp3 1136 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin) |
6 | | simp2 1135 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 ≈ 𝐵) |
7 | | enfii 8932 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
8 | 5, 6, 7 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) |
9 | 8 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝐴 ∈ Fin) |
10 | | difssd 4063 |
. . . . . . . . . 10
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐴 ∖ {𝑦}) ⊆ 𝐴) |
11 | | simplrr 774 |
. . . . . . . . . . . 12
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑦 ∈ 𝐴) |
12 | | neldifsn 4722 |
. . . . . . . . . . . 12
⊢ ¬
𝑦 ∈ (𝐴 ∖ {𝑦}) |
13 | | nelne1 3040 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ (𝐴 ∖ {𝑦})) → 𝐴 ≠ (𝐴 ∖ {𝑦})) |
14 | 11, 12, 13 | sylancl 585 |
. . . . . . . . . . 11
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝐴 ≠ (𝐴 ∖ {𝑦})) |
15 | 14 | necomd 2998 |
. . . . . . . . . 10
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐴 ∖ {𝑦}) ≠ 𝐴) |
16 | | df-pss 3902 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ↔ ((𝐴 ∖ {𝑦}) ⊆ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≠ 𝐴)) |
17 | 10, 15, 16 | sylanbrc 582 |
. . . . . . . . 9
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐴 ∖ {𝑦}) ⊊ 𝐴) |
18 | | php3 8899 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∖ {𝑦}) ⊊ 𝐴) → (𝐴 ∖ {𝑦}) ≺ 𝐴) |
19 | 9, 17, 18 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐴 ∖ {𝑦}) ≺ 𝐴) |
20 | 6 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝐴 ≈ 𝐵) |
21 | | sdomentr 8847 |
. . . . . . . 8
⊢ (((𝐴 ∖ {𝑦}) ≺ 𝐴 ∧ 𝐴 ≈ 𝐵) → (𝐴 ∖ {𝑦}) ≺ 𝐵) |
22 | 19, 20, 21 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐴 ∖ {𝑦}) ≺ 𝐵) |
23 | 4, 22 | nsyl3 138 |
. . . . . 6
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ¬ 𝐵 ≼ (𝐴 ∖ {𝑦})) |
24 | 8 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → 𝐴 ∈ Fin) |
25 | | difss 4062 |
. . . . . . . . . . 11
⊢ (𝐴 ∖ {𝑦}) ⊆ 𝐴 |
26 | | ssfi 8918 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∖ {𝑦}) ⊆ 𝐴) → (𝐴 ∖ {𝑦}) ∈ Fin) |
27 | 24, 25, 26 | sylancl 585 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → (𝐴 ∖ {𝑦}) ∈ Fin) |
28 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → 𝐹:𝐴⟶𝐵) |
29 | | fssres 6624 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐴 ∖ {𝑦}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})⟶𝐵) |
30 | 28, 25, 29 | sylancl 585 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})⟶𝐵) |
31 | 1 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → 𝐹:𝐴–onto→𝐵) |
32 | | foelrn 6964 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑧 ∈ 𝐵) → ∃𝑢 ∈ 𝐴 𝑧 = (𝐹‘𝑢)) |
33 | 31, 32 | sylan 579 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) ∧ 𝑧 ∈ 𝐵) → ∃𝑢 ∈ 𝐴 𝑧 = (𝐹‘𝑢)) |
34 | | simprll 775 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → 𝑥 ∈ 𝐴) |
35 | | simprrr 778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → 𝑥 ≠ 𝑦) |
36 | | eldifsn 4717 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦)) |
37 | 34, 35, 36 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → 𝑥 ∈ (𝐴 ∖ {𝑦})) |
38 | | simprrl 777 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
39 | 38 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → (𝐹‘𝑦) = (𝐹‘𝑥)) |
40 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑥 → (𝐹‘𝑤) = (𝐹‘𝑥)) |
41 | 40 | rspceeqv 3567 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ (𝐴 ∖ {𝑦}) ∧ (𝐹‘𝑦) = (𝐹‘𝑥)) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑦) = (𝐹‘𝑤)) |
42 | 37, 39, 41 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑦) = (𝐹‘𝑤)) |
43 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑦 → ((𝐹‘𝑢) = (𝐹‘𝑤) ↔ (𝐹‘𝑦) = (𝐹‘𝑤))) |
44 | 43 | rexbidv 3225 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 = 𝑦 → (∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑢) = (𝐹‘𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑦) = (𝐹‘𝑤))) |
45 | 42, 44 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → (𝑢 = 𝑦 → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑢) = (𝐹‘𝑤))) |
46 | 45 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) ∧ 𝑢 ∈ 𝐴) → (𝑢 = 𝑦 → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑢) = (𝐹‘𝑤))) |
47 | 46 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 = 𝑦) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑢) = (𝐹‘𝑤)) |
48 | | eldifsn 4717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑢 ∈ 𝐴 ∧ 𝑢 ≠ 𝑦)) |
49 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹‘𝑢) = (𝐹‘𝑢) |
50 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑢 → (𝐹‘𝑤) = (𝐹‘𝑢)) |
51 | 50 | rspceeqv 3567 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢 ∈ (𝐴 ∖ {𝑦}) ∧ (𝐹‘𝑢) = (𝐹‘𝑢)) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑢) = (𝐹‘𝑤)) |
52 | 49, 51 | mpan2 687 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (𝐴 ∖ {𝑦}) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑢) = (𝐹‘𝑤)) |
53 | 48, 52 | sylbir 234 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑢 ≠ 𝑦) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑢) = (𝐹‘𝑤)) |
54 | 53 | adantll 710 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≠ 𝑦) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑢) = (𝐹‘𝑤)) |
55 | 47, 54 | pm2.61dane 3031 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) ∧ 𝑢 ∈ 𝐴) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑢) = (𝐹‘𝑤)) |
56 | | fvres 6775 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ (𝐴 ∖ {𝑦}) → ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) = (𝐹‘𝑤)) |
57 | 56 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ (𝐴 ∖ {𝑦}) → (𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) ↔ 𝑧 = (𝐹‘𝑤))) |
58 | 57 | rexbiia 3176 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑤 ∈
(𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = (𝐹‘𝑤)) |
59 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝐹‘𝑢) → (𝑧 = (𝐹‘𝑤) ↔ (𝐹‘𝑢) = (𝐹‘𝑤))) |
60 | 59 | rexbidv 3225 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝐹‘𝑢) → (∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = (𝐹‘𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑢) = (𝐹‘𝑤))) |
61 | 58, 60 | syl5bb 282 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐹‘𝑢) → (∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹‘𝑢) = (𝐹‘𝑤))) |
62 | 55, 61 | syl5ibrcom 246 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) ∧ 𝑢 ∈ 𝐴) → (𝑧 = (𝐹‘𝑢) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤))) |
63 | 62 | rexlimdva 3212 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → (∃𝑢 ∈ 𝐴 𝑧 = (𝐹‘𝑢) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤))) |
64 | 63 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) ∧ ∃𝑢 ∈ 𝐴 𝑧 = (𝐹‘𝑢)) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤)) |
65 | 33, 64 | syldan 590 |
. . . . . . . . . . . 12
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) ∧ 𝑧 ∈ 𝐵) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤)) |
66 | 65 | ralrimiva 3107 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤)) |
67 | | dffo3 6960 |
. . . . . . . . . . 11
⊢ ((𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})–onto→𝐵 ↔ ((𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})⟶𝐵 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤))) |
68 | 30, 66, 67 | sylanbrc 582 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})–onto→𝐵) |
69 | | fodomfi 9022 |
. . . . . . . . . 10
⊢ (((𝐴 ∖ {𝑦}) ∈ Fin ∧ (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})–onto→𝐵) → 𝐵 ≼ (𝐴 ∖ {𝑦})) |
70 | 27, 68, 69 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) → 𝐵 ≼ (𝐴 ∖ {𝑦})) |
71 | 70 | anassrs 467 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐵 ≼ (𝐴 ∖ {𝑦})) |
72 | 71 | expr 456 |
. . . . . . 7
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝑥 ≠ 𝑦 → 𝐵 ≼ (𝐴 ∖ {𝑦}))) |
73 | 72 | necon1bd 2960 |
. . . . . 6
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (¬ 𝐵 ≼ (𝐴 ∖ {𝑦}) → 𝑥 = 𝑦)) |
74 | 23, 73 | mpd 15 |
. . . . 5
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 = 𝑦) |
75 | 74 | ex 412 |
. . . 4
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
76 | 75 | ralrimivva 3114 |
. . 3
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
77 | | dff13 7109 |
. . 3
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
78 | 3, 76, 77 | sylanbrc 582 |
. 2
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐹:𝐴–1-1→𝐵) |
79 | | df-f1o 6425 |
. 2
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) |
80 | 78, 1, 79 | sylanbrc 582 |
1
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐹:𝐴–1-1-onto→𝐵) |