MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fofinf1o Structured version   Visualization version   GIF version

Theorem fofinf1o 9274
Description: Any surjection from one finite set to another of equal size must be a bijection. (Contributed by Mario Carneiro, 19-Aug-2014.)
Assertion
Ref Expression
fofinf1o ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴1-1-onto𝐵)

Proof of Theorem fofinf1o
Dummy variables 𝑤 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . . 4 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴onto𝐵)
2 fof 6757 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
31, 2syl 17 . . 3 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴𝐵)
4 domnsym 9046 . . . . . . 7 (𝐵 ≼ (𝐴 ∖ {𝑦}) → ¬ (𝐴 ∖ {𝑦}) ≺ 𝐵)
5 simp3 1139 . . . . . . . . . . 11 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐵 ∈ Fin)
6 simp2 1138 . . . . . . . . . . 11 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐴𝐵)
7 enfii 9136 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
85, 6, 7syl2anc 585 . . . . . . . . . 10 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
98ad2antrr 725 . . . . . . . . 9 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝐴 ∈ Fin)
10 difssd 4093 . . . . . . . . . 10 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ⊆ 𝐴)
11 simplrr 777 . . . . . . . . . . . 12 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦𝐴)
12 neldifsn 4753 . . . . . . . . . . . 12 ¬ 𝑦 ∈ (𝐴 ∖ {𝑦})
13 nelne1 3038 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ ¬ 𝑦 ∈ (𝐴 ∖ {𝑦})) → 𝐴 ≠ (𝐴 ∖ {𝑦}))
1411, 12, 13sylancl 587 . . . . . . . . . . 11 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝐴 ≠ (𝐴 ∖ {𝑦}))
1514necomd 2996 . . . . . . . . . 10 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ≠ 𝐴)
16 df-pss 3930 . . . . . . . . . 10 ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ↔ ((𝐴 ∖ {𝑦}) ⊆ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≠ 𝐴))
1710, 15, 16sylanbrc 584 . . . . . . . . 9 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ⊊ 𝐴)
18 php3 9159 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝐴 ∖ {𝑦}) ⊊ 𝐴) → (𝐴 ∖ {𝑦}) ≺ 𝐴)
199, 17, 18syl2anc 585 . . . . . . . 8 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ≺ 𝐴)
206ad2antrr 725 . . . . . . . 8 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝐴𝐵)
21 sdomentr 9058 . . . . . . . 8 (((𝐴 ∖ {𝑦}) ≺ 𝐴𝐴𝐵) → (𝐴 ∖ {𝑦}) ≺ 𝐵)
2219, 20, 21syl2anc 585 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ≺ 𝐵)
234, 22nsyl3 138 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ¬ 𝐵 ≼ (𝐴 ∖ {𝑦}))
248adantr 482 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝐴 ∈ Fin)
25 difss 4092 . . . . . . . . . . 11 (𝐴 ∖ {𝑦}) ⊆ 𝐴
26 ssfi 9120 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝐴 ∖ {𝑦}) ⊆ 𝐴) → (𝐴 ∖ {𝑦}) ∈ Fin)
2724, 25, 26sylancl 587 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐴 ∖ {𝑦}) ∈ Fin)
283adantr 482 . . . . . . . . . . . 12 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝐹:𝐴𝐵)
29 fssres 6709 . . . . . . . . . . . 12 ((𝐹:𝐴𝐵 ∧ (𝐴 ∖ {𝑦}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})⟶𝐵)
3028, 25, 29sylancl 587 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})⟶𝐵)
311adantr 482 . . . . . . . . . . . . . 14 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝐹:𝐴onto𝐵)
32 foelrn 7057 . . . . . . . . . . . . . 14 ((𝐹:𝐴onto𝐵𝑧𝐵) → ∃𝑢𝐴 𝑧 = (𝐹𝑢))
3331, 32sylan 581 . . . . . . . . . . . . 13 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑧𝐵) → ∃𝑢𝐴 𝑧 = (𝐹𝑢))
34 simprll 778 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝑥𝐴)
35 simprrr 781 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝑥𝑦)
36 eldifsn 4748 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑥𝐴𝑥𝑦))
3734, 35, 36sylanbrc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝑥 ∈ (𝐴 ∖ {𝑦}))
38 simprrl 780 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐹𝑥) = (𝐹𝑦))
3938eqcomd 2739 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐹𝑦) = (𝐹𝑥))
40 fveq2 6843 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
4140rspceeqv 3596 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝐴 ∖ {𝑦}) ∧ (𝐹𝑦) = (𝐹𝑥)) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑦) = (𝐹𝑤))
4237, 39, 41syl2anc 585 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑦) = (𝐹𝑤))
43 fveqeq2 6852 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑦 → ((𝐹𝑢) = (𝐹𝑤) ↔ (𝐹𝑦) = (𝐹𝑤)))
4443rexbidv 3172 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑦 → (∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑦) = (𝐹𝑤)))
4542, 44syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝑢 = 𝑦 → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤)))
4645adantr 482 . . . . . . . . . . . . . . . . . 18 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) → (𝑢 = 𝑦 → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤)))
4746imp 408 . . . . . . . . . . . . . . . . 17 (((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) ∧ 𝑢 = 𝑦) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
48 eldifsn 4748 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑢𝐴𝑢𝑦))
49 eqid 2733 . . . . . . . . . . . . . . . . . . . 20 (𝐹𝑢) = (𝐹𝑢)
50 fveq2 6843 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑢 → (𝐹𝑤) = (𝐹𝑢))
5150rspceeqv 3596 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ (𝐴 ∖ {𝑦}) ∧ (𝐹𝑢) = (𝐹𝑢)) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
5249, 51mpan2 690 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (𝐴 ∖ {𝑦}) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
5348, 52sylbir 234 . . . . . . . . . . . . . . . . . 18 ((𝑢𝐴𝑢𝑦) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
5453adantll 713 . . . . . . . . . . . . . . . . 17 (((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) ∧ 𝑢𝑦) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
5547, 54pm2.61dane 3029 . . . . . . . . . . . . . . . 16 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
56 fvres 6862 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴 ∖ {𝑦}) → ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) = (𝐹𝑤))
5756eqeq2d 2744 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝐴 ∖ {𝑦}) → (𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) ↔ 𝑧 = (𝐹𝑤)))
5857rexbiia 3092 . . . . . . . . . . . . . . . . 17 (∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = (𝐹𝑤))
59 eqeq1 2737 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐹𝑢) → (𝑧 = (𝐹𝑤) ↔ (𝐹𝑢) = (𝐹𝑤)))
6059rexbidv 3172 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹𝑢) → (∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = (𝐹𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤)))
6158, 60bitrid 283 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑢) → (∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤)))
6255, 61syl5ibrcom 247 . . . . . . . . . . . . . . 15 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) → (𝑧 = (𝐹𝑢) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤)))
6362rexlimdva 3149 . . . . . . . . . . . . . 14 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (∃𝑢𝐴 𝑧 = (𝐹𝑢) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤)))
6463imp 408 . . . . . . . . . . . . 13 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ ∃𝑢𝐴 𝑧 = (𝐹𝑢)) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤))
6533, 64syldan 592 . . . . . . . . . . . 12 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑧𝐵) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤))
6665ralrimiva 3140 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → ∀𝑧𝐵𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤))
67 dffo3 7053 . . . . . . . . . . 11 ((𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})–onto𝐵 ↔ ((𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})⟶𝐵 ∧ ∀𝑧𝐵𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤)))
6830, 66, 67sylanbrc 584 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})–onto𝐵)
69 fodomfi 9272 . . . . . . . . . 10 (((𝐴 ∖ {𝑦}) ∈ Fin ∧ (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})–onto𝐵) → 𝐵 ≼ (𝐴 ∖ {𝑦}))
7027, 68, 69syl2anc 585 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝐵 ≼ (𝐴 ∖ {𝑦}))
7170anassrs 469 . . . . . . . 8 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → 𝐵 ≼ (𝐴 ∖ {𝑦}))
7271expr 458 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥𝑦𝐵 ≼ (𝐴 ∖ {𝑦})))
7372necon1bd 2958 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (¬ 𝐵 ≼ (𝐴 ∖ {𝑦}) → 𝑥 = 𝑦))
7423, 73mpd 15 . . . . 5 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
7574ex 414 . . . 4 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
7675ralrimivva 3194 . . 3 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
77 dff13 7203 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
783, 76, 77sylanbrc 584 . 2 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴1-1𝐵)
79 df-f1o 6504 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
8078, 1, 79sylanbrc 584 1 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2940  wral 3061  wrex 3070  cdif 3908  wss 3911  wpss 3912  {csn 4587   class class class wbr 5106  cres 5636  wf 6493  1-1wf1 6494  ontowfo 6495  1-1-ontowf1o 6496  cfv 6497  cen 8883  cdom 8884  csdm 8885  Fincfn 8886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-om 7804  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890
This theorem is referenced by:  rneqdmfinf1o  9275  phpreu  36108
  Copyright terms: Public domain W3C validator