MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fofinf1o Structured version   Visualization version   GIF version

Theorem fofinf1o 9271
Description: Any surjection from one finite set to another of equal size must be a bijection. (Contributed by Mario Carneiro, 19-Aug-2014.)
Assertion
Ref Expression
fofinf1o ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴1-1-onto𝐵)

Proof of Theorem fofinf1o
Dummy variables 𝑤 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴onto𝐵)
2 fof 6756 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
31, 2syl 17 . . 3 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴𝐵)
4 domnsym 9043 . . . . . . 7 (𝐵 ≼ (𝐴 ∖ {𝑦}) → ¬ (𝐴 ∖ {𝑦}) ≺ 𝐵)
5 simp3 1138 . . . . . . . . . . 11 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐵 ∈ Fin)
6 simp2 1137 . . . . . . . . . . 11 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐴𝐵)
7 enfii 9133 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
85, 6, 7syl2anc 584 . . . . . . . . . 10 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
98ad2antrr 724 . . . . . . . . 9 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝐴 ∈ Fin)
10 difssd 4092 . . . . . . . . . 10 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ⊆ 𝐴)
11 simplrr 776 . . . . . . . . . . . 12 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦𝐴)
12 neldifsn 4752 . . . . . . . . . . . 12 ¬ 𝑦 ∈ (𝐴 ∖ {𝑦})
13 nelne1 3041 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ ¬ 𝑦 ∈ (𝐴 ∖ {𝑦})) → 𝐴 ≠ (𝐴 ∖ {𝑦}))
1411, 12, 13sylancl 586 . . . . . . . . . . 11 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝐴 ≠ (𝐴 ∖ {𝑦}))
1514necomd 2999 . . . . . . . . . 10 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ≠ 𝐴)
16 df-pss 3929 . . . . . . . . . 10 ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ↔ ((𝐴 ∖ {𝑦}) ⊆ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≠ 𝐴))
1710, 15, 16sylanbrc 583 . . . . . . . . 9 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ⊊ 𝐴)
18 php3 9156 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝐴 ∖ {𝑦}) ⊊ 𝐴) → (𝐴 ∖ {𝑦}) ≺ 𝐴)
199, 17, 18syl2anc 584 . . . . . . . 8 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ≺ 𝐴)
206ad2antrr 724 . . . . . . . 8 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝐴𝐵)
21 sdomentr 9055 . . . . . . . 8 (((𝐴 ∖ {𝑦}) ≺ 𝐴𝐴𝐵) → (𝐴 ∖ {𝑦}) ≺ 𝐵)
2219, 20, 21syl2anc 584 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ≺ 𝐵)
234, 22nsyl3 138 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ¬ 𝐵 ≼ (𝐴 ∖ {𝑦}))
248adantr 481 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝐴 ∈ Fin)
25 difss 4091 . . . . . . . . . . 11 (𝐴 ∖ {𝑦}) ⊆ 𝐴
26 ssfi 9117 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝐴 ∖ {𝑦}) ⊆ 𝐴) → (𝐴 ∖ {𝑦}) ∈ Fin)
2724, 25, 26sylancl 586 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐴 ∖ {𝑦}) ∈ Fin)
283adantr 481 . . . . . . . . . . . 12 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝐹:𝐴𝐵)
29 fssres 6708 . . . . . . . . . . . 12 ((𝐹:𝐴𝐵 ∧ (𝐴 ∖ {𝑦}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})⟶𝐵)
3028, 25, 29sylancl 586 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})⟶𝐵)
311adantr 481 . . . . . . . . . . . . . 14 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝐹:𝐴onto𝐵)
32 foelrn 7056 . . . . . . . . . . . . . 14 ((𝐹:𝐴onto𝐵𝑧𝐵) → ∃𝑢𝐴 𝑧 = (𝐹𝑢))
3331, 32sylan 580 . . . . . . . . . . . . 13 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑧𝐵) → ∃𝑢𝐴 𝑧 = (𝐹𝑢))
34 simprll 777 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝑥𝐴)
35 simprrr 780 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝑥𝑦)
36 eldifsn 4747 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑥𝐴𝑥𝑦))
3734, 35, 36sylanbrc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝑥 ∈ (𝐴 ∖ {𝑦}))
38 simprrl 779 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐹𝑥) = (𝐹𝑦))
3938eqcomd 2742 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐹𝑦) = (𝐹𝑥))
40 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
4140rspceeqv 3595 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝐴 ∖ {𝑦}) ∧ (𝐹𝑦) = (𝐹𝑥)) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑦) = (𝐹𝑤))
4237, 39, 41syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑦) = (𝐹𝑤))
43 fveqeq2 6851 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑦 → ((𝐹𝑢) = (𝐹𝑤) ↔ (𝐹𝑦) = (𝐹𝑤)))
4443rexbidv 3175 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑦 → (∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑦) = (𝐹𝑤)))
4542, 44syl5ibrcom 246 . . . . . . . . . . . . . . . . . . 19 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝑢 = 𝑦 → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤)))
4645adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) → (𝑢 = 𝑦 → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤)))
4746imp 407 . . . . . . . . . . . . . . . . 17 (((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) ∧ 𝑢 = 𝑦) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
48 eldifsn 4747 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑢𝐴𝑢𝑦))
49 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (𝐹𝑢) = (𝐹𝑢)
50 fveq2 6842 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑢 → (𝐹𝑤) = (𝐹𝑢))
5150rspceeqv 3595 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ (𝐴 ∖ {𝑦}) ∧ (𝐹𝑢) = (𝐹𝑢)) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
5249, 51mpan2 689 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (𝐴 ∖ {𝑦}) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
5348, 52sylbir 234 . . . . . . . . . . . . . . . . . 18 ((𝑢𝐴𝑢𝑦) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
5453adantll 712 . . . . . . . . . . . . . . . . 17 (((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) ∧ 𝑢𝑦) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
5547, 54pm2.61dane 3032 . . . . . . . . . . . . . . . 16 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
56 fvres 6861 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴 ∖ {𝑦}) → ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) = (𝐹𝑤))
5756eqeq2d 2747 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝐴 ∖ {𝑦}) → (𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) ↔ 𝑧 = (𝐹𝑤)))
5857rexbiia 3095 . . . . . . . . . . . . . . . . 17 (∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = (𝐹𝑤))
59 eqeq1 2740 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐹𝑢) → (𝑧 = (𝐹𝑤) ↔ (𝐹𝑢) = (𝐹𝑤)))
6059rexbidv 3175 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹𝑢) → (∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = (𝐹𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤)))
6158, 60bitrid 282 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑢) → (∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤)))
6255, 61syl5ibrcom 246 . . . . . . . . . . . . . . 15 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) → (𝑧 = (𝐹𝑢) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤)))
6362rexlimdva 3152 . . . . . . . . . . . . . 14 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (∃𝑢𝐴 𝑧 = (𝐹𝑢) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤)))
6463imp 407 . . . . . . . . . . . . 13 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ ∃𝑢𝐴 𝑧 = (𝐹𝑢)) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤))
6533, 64syldan 591 . . . . . . . . . . . 12 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑧𝐵) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤))
6665ralrimiva 3143 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → ∀𝑧𝐵𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤))
67 dffo3 7052 . . . . . . . . . . 11 ((𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})–onto𝐵 ↔ ((𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})⟶𝐵 ∧ ∀𝑧𝐵𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤)))
6830, 66, 67sylanbrc 583 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})–onto𝐵)
69 fodomfi 9269 . . . . . . . . . 10 (((𝐴 ∖ {𝑦}) ∈ Fin ∧ (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})–onto𝐵) → 𝐵 ≼ (𝐴 ∖ {𝑦}))
7027, 68, 69syl2anc 584 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝐵 ≼ (𝐴 ∖ {𝑦}))
7170anassrs 468 . . . . . . . 8 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → 𝐵 ≼ (𝐴 ∖ {𝑦}))
7271expr 457 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥𝑦𝐵 ≼ (𝐴 ∖ {𝑦})))
7372necon1bd 2961 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (¬ 𝐵 ≼ (𝐴 ∖ {𝑦}) → 𝑥 = 𝑦))
7423, 73mpd 15 . . . . 5 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
7574ex 413 . . . 4 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
7675ralrimivva 3197 . . 3 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
77 dff13 7202 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
783, 76, 77sylanbrc 583 . 2 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴1-1𝐵)
79 df-f1o 6503 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
8078, 1, 79sylanbrc 583 1 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cdif 3907  wss 3910  wpss 3911  {csn 4586   class class class wbr 5105  cres 5635  wf 6492  1-1wf1 6493  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496  cen 8880  cdom 8881  csdm 8882  Fincfn 8883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887
This theorem is referenced by:  rneqdmfinf1o  9272  phpreu  36062
  Copyright terms: Public domain W3C validator