Step | Hyp | Ref
| Expression |
1 | | finsumvtxdg2sstep.p |
. . 3
⊢ 𝑃 = (𝐸 ↾ 𝐼) |
2 | | finresfin 9045 |
. . . 4
⊢ (𝐸 ∈ Fin → (𝐸 ↾ 𝐼) ∈ Fin) |
3 | 2 | ad2antll 726 |
. . 3
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝐸 ↾ 𝐼) ∈ Fin) |
4 | 1, 3 | eqeltrid 2843 |
. 2
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑃 ∈ Fin) |
5 | | difsnid 4743 |
. . . . . . . . 9
⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∖ {𝑁}) ∪ {𝑁}) = 𝑉) |
6 | 5 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((𝑉 ∖ {𝑁}) ∪ {𝑁}) = 𝑉) |
7 | 6 | eqcomd 2744 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑉 = ((𝑉 ∖ {𝑁}) ∪ {𝑁})) |
8 | 7 | sumeq1d 15413 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = Σ𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣)) |
9 | | diffi 8962 |
. . . . . . . . 9
⊢ (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin) |
10 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (𝑉 ∖ {𝑁}) ∈ Fin) |
11 | 10 | adantl 482 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑉 ∖ {𝑁}) ∈ Fin) |
12 | | simpr 485 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ 𝑉) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑁 ∈ 𝑉) |
14 | | neldifsn 4725 |
. . . . . . . . 9
⊢ ¬
𝑁 ∈ (𝑉 ∖ {𝑁}) |
15 | 14 | nelir 3052 |
. . . . . . . 8
⊢ 𝑁 ∉ (𝑉 ∖ {𝑁}) |
16 | 15 | a1i 11 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑁 ∉ (𝑉 ∖ {𝑁})) |
17 | | dmfi 9097 |
. . . . . . . . . . 11
⊢ (𝐸 ∈ Fin → dom 𝐸 ∈ Fin) |
18 | 17 | ad2antll 726 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → dom 𝐸 ∈ Fin) |
19 | 5 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ 𝑉 → (𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁}) ↔ 𝑣 ∈ 𝑉)) |
20 | 19 | biimpd 228 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ 𝑉 → (𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁}) → 𝑣 ∈ 𝑉)) |
21 | 20 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁}) → 𝑣 ∈ 𝑉)) |
22 | 21 | imp 407 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})) → 𝑣 ∈ 𝑉) |
23 | | finsumvtxdg2sstep.v |
. . . . . . . . . . 11
⊢ 𝑉 = (Vtx‘𝐺) |
24 | | finsumvtxdg2sstep.e |
. . . . . . . . . . 11
⊢ 𝐸 = (iEdg‘𝐺) |
25 | | eqid 2738 |
. . . . . . . . . . 11
⊢ dom 𝐸 = dom 𝐸 |
26 | 23, 24, 25 | vtxdgfisnn0 27842 |
. . . . . . . . . 10
⊢ ((dom
𝐸 ∈ Fin ∧ 𝑣 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑣) ∈
ℕ0) |
27 | 18, 22, 26 | syl2an2r 682 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})) → ((VtxDeg‘𝐺)‘𝑣) ∈
ℕ0) |
28 | 27 | nn0zd 12424 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})) → ((VtxDeg‘𝐺)‘𝑣) ∈ ℤ) |
29 | 28 | ralrimiva 3103 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ∀𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣) ∈ ℤ) |
30 | | fsumsplitsnun 15467 |
. . . . . . 7
⊢ (((𝑉 ∖ {𝑁}) ∈ Fin ∧ (𝑁 ∈ 𝑉 ∧ 𝑁 ∉ (𝑉 ∖ {𝑁})) ∧ ∀𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣) ∈ ℤ) → Σ𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ⦋𝑁 / 𝑣⦌((VtxDeg‘𝐺)‘𝑣))) |
31 | 11, 13, 16, 29, 30 | syl121anc 1374 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ⦋𝑁 / 𝑣⦌((VtxDeg‘𝐺)‘𝑣))) |
32 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑁 → ((VtxDeg‘𝐺)‘𝑣) = ((VtxDeg‘𝐺)‘𝑁)) |
33 | 32 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 = 𝑁) → ((VtxDeg‘𝐺)‘𝑣) = ((VtxDeg‘𝐺)‘𝑁)) |
34 | 12, 33 | csbied 3870 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ⦋𝑁 / 𝑣⦌((VtxDeg‘𝐺)‘𝑣) = ((VtxDeg‘𝐺)‘𝑁)) |
35 | 34 | adantr 481 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ⦋𝑁 / 𝑣⦌((VtxDeg‘𝐺)‘𝑣) = ((VtxDeg‘𝐺)‘𝑁)) |
36 | 35 | oveq2d 7291 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ⦋𝑁 / 𝑣⦌((VtxDeg‘𝐺)‘𝑣)) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁))) |
37 | 8, 31, 36 | 3eqtrd 2782 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁))) |
38 | 37 | adantr 481 |
. . . 4
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁))) |
39 | | finsumvtxdg2sstep.k |
. . . . . . . 8
⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
40 | | finsumvtxdg2sstep.i |
. . . . . . . 8
⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
41 | | finsumvtxdg2sstep.s |
. . . . . . . 8
⊢ 𝑆 = 〈𝐾, 𝑃〉 |
42 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝐸‘𝑗) = (𝐸‘𝑖)) |
43 | 42 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → (𝑁 ∈ (𝐸‘𝑗) ↔ 𝑁 ∈ (𝐸‘𝑖))) |
44 | 43 | cbvrabv 3426 |
. . . . . . . 8
⊢ {𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑗)} = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
45 | 23, 24, 39, 40, 1, 41, 44 | finsumvtxdg2ssteplem2 27913 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑗)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) |
46 | 45 | oveq2d 7291 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘{𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑗)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})))) |
47 | 46 | adantr 481 |
. . . . 5
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘{𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑗)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})))) |
48 | 23, 24, 39, 40, 1, 41, 44 | finsumvtxdg2ssteplem4 27915 |
. . . . 5
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘{𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑗)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘{𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑗)})))) |
49 | 44 | fveq2i 6777 |
. . . . . . . 8
⊢
(♯‘{𝑗
∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑗)}) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}) |
50 | 49 | oveq2i 7286 |
. . . . . . 7
⊢
((♯‘𝑃) +
(♯‘{𝑗 ∈
dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑗)})) = ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})) |
51 | 50 | oveq2i 7286 |
. . . . . 6
⊢ (2
· ((♯‘𝑃)
+ (♯‘{𝑗 ∈
dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑗)}))) = (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}))) |
52 | 51 | a1i 11 |
. . . . 5
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (2 ·
((♯‘𝑃) +
(♯‘{𝑗 ∈
dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑗)}))) = (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})))) |
53 | 47, 48, 52 | 3eqtrd 2782 |
. . . 4
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)) = (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})))) |
54 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
55 | 23, 24, 39, 40, 1, 41, 54 | finsumvtxdg2ssteplem1 27912 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}))) |
56 | 55 | oveq2d 7291 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 ·
(♯‘𝐸)) = (2
· ((♯‘𝑃)
+ (♯‘{𝑖 ∈
dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})))) |
57 | 56 | eqcomd 2744 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 ·
((♯‘𝑃) +
(♯‘{𝑖 ∈
dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}))) = (2 · (♯‘𝐸))) |
58 | 57 | adantr 481 |
. . . 4
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (2 ·
((♯‘𝑃) +
(♯‘{𝑖 ∈
dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}))) = (2 · (♯‘𝐸))) |
59 | 38, 53, 58 | 3eqtrd 2782 |
. . 3
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = (2 · (♯‘𝐸))) |
60 | 59 | ex 413 |
. 2
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) → Σ𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = (2 · (♯‘𝐸)))) |
61 | 4, 60 | embantd 59 |
1
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((𝑃 ∈ Fin → Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = (2 · (♯‘𝐸)))) |