MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2sstep Structured version   Visualization version   GIF version

Theorem finsumvtxdg2sstep 27916
Description: Induction step of finsumvtxdg2size 27917: In a finite pseudograph of finite size, the sum of the degrees of all vertices of the pseudograph is twice the size of the pseudograph if the sum of the degrees of all vertices of the subgraph of the pseudograph not containing one of the vertices is twice the size of the subgraph. (Contributed by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdg2sstep.v 𝑉 = (Vtx‘𝐺)
finsumvtxdg2sstep.e 𝐸 = (iEdg‘𝐺)
finsumvtxdg2sstep.k 𝐾 = (𝑉 ∖ {𝑁})
finsumvtxdg2sstep.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
finsumvtxdg2sstep.p 𝑃 = (𝐸𝐼)
finsumvtxdg2sstep.s 𝑆 = ⟨𝐾, 𝑃
Assertion
Ref Expression
finsumvtxdg2sstep (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((𝑃 ∈ Fin → Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = (2 · (♯‘𝐸))))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁   𝑣,𝐸   𝑣,𝐺   𝑣,𝐾   𝑣,𝑁   𝑖,𝑉,𝑣
Allowed substitution hints:   𝑃(𝑣,𝑖)   𝑆(𝑣,𝑖)   𝐼(𝑣,𝑖)   𝐾(𝑖)

Proof of Theorem finsumvtxdg2sstep
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 finsumvtxdg2sstep.p . . 3 𝑃 = (𝐸𝐼)
2 finresfin 9045 . . . 4 (𝐸 ∈ Fin → (𝐸𝐼) ∈ Fin)
32ad2antll 726 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝐸𝐼) ∈ Fin)
41, 3eqeltrid 2843 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑃 ∈ Fin)
5 difsnid 4743 . . . . . . . . 9 (𝑁𝑉 → ((𝑉 ∖ {𝑁}) ∪ {𝑁}) = 𝑉)
65ad2antlr 724 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((𝑉 ∖ {𝑁}) ∪ {𝑁}) = 𝑉)
76eqcomd 2744 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑉 = ((𝑉 ∖ {𝑁}) ∪ {𝑁}))
87sumeq1d 15413 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = Σ𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣))
9 diffi 8962 . . . . . . . . 9 (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin)
109adantr 481 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (𝑉 ∖ {𝑁}) ∈ Fin)
1110adantl 482 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑉 ∖ {𝑁}) ∈ Fin)
12 simpr 485 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑁𝑉)
1312adantr 481 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑁𝑉)
14 neldifsn 4725 . . . . . . . . 9 ¬ 𝑁 ∈ (𝑉 ∖ {𝑁})
1514nelir 3052 . . . . . . . 8 𝑁 ∉ (𝑉 ∖ {𝑁})
1615a1i 11 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑁 ∉ (𝑉 ∖ {𝑁}))
17 dmfi 9097 . . . . . . . . . . 11 (𝐸 ∈ Fin → dom 𝐸 ∈ Fin)
1817ad2antll 726 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → dom 𝐸 ∈ Fin)
195eleq2d 2824 . . . . . . . . . . . . 13 (𝑁𝑉 → (𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁}) ↔ 𝑣𝑉))
2019biimpd 228 . . . . . . . . . . . 12 (𝑁𝑉 → (𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁}) → 𝑣𝑉))
2120ad2antlr 724 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁}) → 𝑣𝑉))
2221imp 407 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})) → 𝑣𝑉)
23 finsumvtxdg2sstep.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
24 finsumvtxdg2sstep.e . . . . . . . . . . 11 𝐸 = (iEdg‘𝐺)
25 eqid 2738 . . . . . . . . . . 11 dom 𝐸 = dom 𝐸
2623, 24, 25vtxdgfisnn0 27842 . . . . . . . . . 10 ((dom 𝐸 ∈ Fin ∧ 𝑣𝑉) → ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0)
2718, 22, 26syl2an2r 682 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})) → ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0)
2827nn0zd 12424 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})) → ((VtxDeg‘𝐺)‘𝑣) ∈ ℤ)
2928ralrimiva 3103 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ∀𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣) ∈ ℤ)
30 fsumsplitsnun 15467 . . . . . . 7 (((𝑉 ∖ {𝑁}) ∈ Fin ∧ (𝑁𝑉𝑁 ∉ (𝑉 ∖ {𝑁})) ∧ ∀𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣) ∈ ℤ) → Σ𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + 𝑁 / 𝑣((VtxDeg‘𝐺)‘𝑣)))
3111, 13, 16, 29, 30syl121anc 1374 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + 𝑁 / 𝑣((VtxDeg‘𝐺)‘𝑣)))
32 fveq2 6774 . . . . . . . . . 10 (𝑣 = 𝑁 → ((VtxDeg‘𝐺)‘𝑣) = ((VtxDeg‘𝐺)‘𝑁))
3332adantl 482 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑣 = 𝑁) → ((VtxDeg‘𝐺)‘𝑣) = ((VtxDeg‘𝐺)‘𝑁))
3412, 33csbied 3870 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑁 / 𝑣((VtxDeg‘𝐺)‘𝑣) = ((VtxDeg‘𝐺)‘𝑁))
3534adantr 481 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑁 / 𝑣((VtxDeg‘𝐺)‘𝑣) = ((VtxDeg‘𝐺)‘𝑁))
3635oveq2d 7291 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + 𝑁 / 𝑣((VtxDeg‘𝐺)‘𝑣)) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)))
378, 31, 363eqtrd 2782 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)))
3837adantr 481 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)))
39 finsumvtxdg2sstep.k . . . . . . . 8 𝐾 = (𝑉 ∖ {𝑁})
40 finsumvtxdg2sstep.i . . . . . . . 8 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
41 finsumvtxdg2sstep.s . . . . . . . 8 𝑆 = ⟨𝐾, 𝑃
42 fveq2 6774 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝐸𝑗) = (𝐸𝑖))
4342eleq2d 2824 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑁 ∈ (𝐸𝑗) ↔ 𝑁 ∈ (𝐸𝑖)))
4443cbvrabv 3426 . . . . . . . 8 {𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)} = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
4523, 24, 39, 40, 1, 41, 44finsumvtxdg2ssteplem2 27913 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))
4645oveq2d 7291 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
4746adantr 481 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
4823, 24, 39, 40, 1, 41, 44finsumvtxdg2ssteplem4 27915 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}))))
4944fveq2i 6777 . . . . . . . 8 (♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}) = (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
5049oveq2i 7286 . . . . . . 7 ((♯‘𝑃) + (♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)})) = ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))
5150oveq2i 7286 . . . . . 6 (2 · ((♯‘𝑃) + (♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}))) = (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})))
5251a1i 11 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (2 · ((♯‘𝑃) + (♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}))) = (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))))
5347, 48, 523eqtrd 2782 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)) = (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))))
54 eqid 2738 . . . . . . . 8 {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
5523, 24, 39, 40, 1, 41, 54finsumvtxdg2ssteplem1 27912 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})))
5655oveq2d 7291 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 · (♯‘𝐸)) = (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))))
5756eqcomd 2744 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))) = (2 · (♯‘𝐸)))
5857adantr 481 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))) = (2 · (♯‘𝐸)))
5938, 53, 583eqtrd 2782 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = (2 · (♯‘𝐸)))
6059ex 413 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = (2 · (♯‘𝐸))))
614, 60embantd 59 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((𝑃 ∈ Fin → Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = (2 · (♯‘𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wnel 3049  wral 3064  {crab 3068  csb 3832  cdif 3884  cun 3885  {csn 4561  cop 4567  dom cdm 5589  cres 5591  cfv 6433  (class class class)co 7275  Fincfn 8733   + caddc 10874   · cmul 10876  2c2 12028  0cn0 12233  cz 12319  chash 14044  Σcsu 15397  Vtxcvtx 27366  iEdgciedg 27367  UPGraphcupgr 27450  VtxDegcvtxdg 27832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-vtx 27368  df-iedg 27369  df-edg 27418  df-uhgr 27428  df-upgr 27452  df-vtxdg 27833
This theorem is referenced by:  finsumvtxdg2size  27917
  Copyright terms: Public domain W3C validator