MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2sstep Structured version   Visualization version   GIF version

Theorem finsumvtxdg2sstep 29513
Description: Induction step of finsumvtxdg2size 29514: In a finite pseudograph of finite size, the sum of the degrees of all vertices of the pseudograph is twice the size of the pseudograph if the sum of the degrees of all vertices of the subgraph of the pseudograph not containing one of the vertices is twice the size of the subgraph. (Contributed by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdg2sstep.v 𝑉 = (Vtx‘𝐺)
finsumvtxdg2sstep.e 𝐸 = (iEdg‘𝐺)
finsumvtxdg2sstep.k 𝐾 = (𝑉 ∖ {𝑁})
finsumvtxdg2sstep.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
finsumvtxdg2sstep.p 𝑃 = (𝐸𝐼)
finsumvtxdg2sstep.s 𝑆 = ⟨𝐾, 𝑃
Assertion
Ref Expression
finsumvtxdg2sstep (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((𝑃 ∈ Fin → Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = (2 · (♯‘𝐸))))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁   𝑣,𝐸   𝑣,𝐺   𝑣,𝐾   𝑣,𝑁   𝑖,𝑉,𝑣
Allowed substitution hints:   𝑃(𝑣,𝑖)   𝑆(𝑣,𝑖)   𝐼(𝑣,𝑖)   𝐾(𝑖)

Proof of Theorem finsumvtxdg2sstep
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 finsumvtxdg2sstep.p . . 3 𝑃 = (𝐸𝐼)
2 finresfin 9173 . . . 4 (𝐸 ∈ Fin → (𝐸𝐼) ∈ Fin)
32ad2antll 729 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝐸𝐼) ∈ Fin)
41, 3eqeltrid 2832 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑃 ∈ Fin)
5 difsnid 4764 . . . . . . . . 9 (𝑁𝑉 → ((𝑉 ∖ {𝑁}) ∪ {𝑁}) = 𝑉)
65ad2antlr 727 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((𝑉 ∖ {𝑁}) ∪ {𝑁}) = 𝑉)
76eqcomd 2735 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑉 = ((𝑉 ∖ {𝑁}) ∪ {𝑁}))
87sumeq1d 15625 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = Σ𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣))
9 diffi 9099 . . . . . . . . 9 (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin)
109adantr 480 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (𝑉 ∖ {𝑁}) ∈ Fin)
1110adantl 481 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑉 ∖ {𝑁}) ∈ Fin)
12 simpr 484 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑁𝑉)
1312adantr 480 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑁𝑉)
14 neldifsn 4746 . . . . . . . . 9 ¬ 𝑁 ∈ (𝑉 ∖ {𝑁})
1514nelir 3032 . . . . . . . 8 𝑁 ∉ (𝑉 ∖ {𝑁})
1615a1i 11 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑁 ∉ (𝑉 ∖ {𝑁}))
17 dmfi 9244 . . . . . . . . . . 11 (𝐸 ∈ Fin → dom 𝐸 ∈ Fin)
1817ad2antll 729 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → dom 𝐸 ∈ Fin)
195eleq2d 2814 . . . . . . . . . . . . 13 (𝑁𝑉 → (𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁}) ↔ 𝑣𝑉))
2019biimpd 229 . . . . . . . . . . . 12 (𝑁𝑉 → (𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁}) → 𝑣𝑉))
2120ad2antlr 727 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁}) → 𝑣𝑉))
2221imp 406 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})) → 𝑣𝑉)
23 finsumvtxdg2sstep.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
24 finsumvtxdg2sstep.e . . . . . . . . . . 11 𝐸 = (iEdg‘𝐺)
25 eqid 2729 . . . . . . . . . . 11 dom 𝐸 = dom 𝐸
2623, 24, 25vtxdgfisnn0 29439 . . . . . . . . . 10 ((dom 𝐸 ∈ Fin ∧ 𝑣𝑉) → ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0)
2718, 22, 26syl2an2r 685 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})) → ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0)
2827nn0zd 12515 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})) → ((VtxDeg‘𝐺)‘𝑣) ∈ ℤ)
2928ralrimiva 3121 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ∀𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣) ∈ ℤ)
30 fsumsplitsnun 15680 . . . . . . 7 (((𝑉 ∖ {𝑁}) ∈ Fin ∧ (𝑁𝑉𝑁 ∉ (𝑉 ∖ {𝑁})) ∧ ∀𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣) ∈ ℤ) → Σ𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + 𝑁 / 𝑣((VtxDeg‘𝐺)‘𝑣)))
3111, 13, 16, 29, 30syl121anc 1377 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ ((𝑉 ∖ {𝑁}) ∪ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + 𝑁 / 𝑣((VtxDeg‘𝐺)‘𝑣)))
32 fveq2 6826 . . . . . . . . . 10 (𝑣 = 𝑁 → ((VtxDeg‘𝐺)‘𝑣) = ((VtxDeg‘𝐺)‘𝑁))
3332adantl 481 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑣 = 𝑁) → ((VtxDeg‘𝐺)‘𝑣) = ((VtxDeg‘𝐺)‘𝑁))
3412, 33csbied 3889 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑁 / 𝑣((VtxDeg‘𝐺)‘𝑣) = ((VtxDeg‘𝐺)‘𝑁))
3534adantr 480 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑁 / 𝑣((VtxDeg‘𝐺)‘𝑣) = ((VtxDeg‘𝐺)‘𝑁))
3635oveq2d 7369 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + 𝑁 / 𝑣((VtxDeg‘𝐺)‘𝑣)) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)))
378, 31, 363eqtrd 2768 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)))
3837adantr 480 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)))
39 finsumvtxdg2sstep.k . . . . . . . 8 𝐾 = (𝑉 ∖ {𝑁})
40 finsumvtxdg2sstep.i . . . . . . . 8 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
41 finsumvtxdg2sstep.s . . . . . . . 8 𝑆 = ⟨𝐾, 𝑃
42 fveq2 6826 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝐸𝑗) = (𝐸𝑖))
4342eleq2d 2814 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑁 ∈ (𝐸𝑗) ↔ 𝑁 ∈ (𝐸𝑖)))
4443cbvrabv 3407 . . . . . . . 8 {𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)} = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
4523, 24, 39, 40, 1, 41, 44finsumvtxdg2ssteplem2 29510 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))
4645oveq2d 7369 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
4746adantr 480 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
4823, 24, 39, 40, 1, 41, 44finsumvtxdg2ssteplem4 29512 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}))))
4944fveq2i 6829 . . . . . . . 8 (♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}) = (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
5049oveq2i 7364 . . . . . . 7 ((♯‘𝑃) + (♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)})) = ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))
5150oveq2i 7364 . . . . . 6 (2 · ((♯‘𝑃) + (♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}))) = (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})))
5251a1i 11 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (2 · ((♯‘𝑃) + (♯‘{𝑗 ∈ dom 𝐸𝑁 ∈ (𝐸𝑗)}))) = (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))))
5347, 48, 523eqtrd 2768 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((VtxDeg‘𝐺)‘𝑁)) = (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))))
54 eqid 2729 . . . . . . . 8 {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
5523, 24, 39, 40, 1, 41, 54finsumvtxdg2ssteplem1 29509 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})))
5655oveq2d 7369 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 · (♯‘𝐸)) = (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))))
5756eqcomd 2735 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))) = (2 · (♯‘𝐸)))
5857adantr 480 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (2 · ((♯‘𝑃) + (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))) = (2 · (♯‘𝐸)))
5938, 53, 583eqtrd 2768 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = (2 · (♯‘𝐸)))
6059ex 412 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = (2 · (♯‘𝐸))))
614, 60embantd 59 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((𝑃 ∈ Fin → Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = (2 · (♯‘𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnel 3029  wral 3044  {crab 3396  csb 3853  cdif 3902  cun 3903  {csn 4579  cop 4585  dom cdm 5623  cres 5625  cfv 6486  (class class class)co 7353  Fincfn 8879   + caddc 11031   · cmul 11033  2c2 12201  0cn0 12402  cz 12489  chash 14255  Σcsu 15611  Vtxcvtx 28959  iEdgciedg 28960  UPGraphcupgr 29043  VtxDegcvtxdg 29429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-rp 12912  df-xadd 13033  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-vtx 28961  df-iedg 28962  df-edg 29011  df-uhgr 29021  df-upgr 29045  df-vtxdg 29430
This theorem is referenced by:  finsumvtxdg2size  29514
  Copyright terms: Public domain W3C validator