| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsetsid | Structured version Visualization version GIF version | ||
| Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.) |
| Ref | Expression |
|---|---|
| fvsetsid | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsval 17137 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ 𝑈) → (𝐹 sSet 〈𝑋, 𝑌〉) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})) | |
| 2 | 1 | 3adant2 1131 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝐹 sSet 〈𝑋, 𝑌〉) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})) |
| 3 | 2 | fveq1d 6860 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = (((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})‘𝑋)) |
| 4 | simp2 1137 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝑊) | |
| 5 | simp3 1138 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
| 6 | neldifsn 4756 | . . . . 5 ⊢ ¬ 𝑋 ∈ (V ∖ {𝑋}) | |
| 7 | dmres 5983 | . . . . . . 7 ⊢ dom (𝐹 ↾ (V ∖ {𝑋})) = ((V ∖ {𝑋}) ∩ dom 𝐹) | |
| 8 | inss1 4200 | . . . . . . 7 ⊢ ((V ∖ {𝑋}) ∩ dom 𝐹) ⊆ (V ∖ {𝑋}) | |
| 9 | 7, 8 | eqsstri 3993 | . . . . . 6 ⊢ dom (𝐹 ↾ (V ∖ {𝑋})) ⊆ (V ∖ {𝑋}) |
| 10 | 9 | sseli 3942 | . . . . 5 ⊢ (𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})) → 𝑋 ∈ (V ∖ {𝑋})) |
| 11 | 6, 10 | mto 197 | . . . 4 ⊢ ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})) |
| 12 | 11 | a1i 11 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))) |
| 13 | fsnunfv 7161 | . . 3 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ∧ ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})‘𝑋) = 𝑌) | |
| 14 | 4, 5, 12, 13 | syl3anc 1373 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})‘𝑋) = 𝑌) |
| 15 | 3, 14 | eqtrd 2764 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 ∪ cun 3912 ∩ cin 3913 {csn 4589 〈cop 4595 dom cdm 5638 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 sSet csts 17133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-sets 17134 |
| This theorem is referenced by: mdetunilem9 22507 |
| Copyright terms: Public domain | W3C validator |