| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsetsid | Structured version Visualization version GIF version | ||
| Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.) |
| Ref | Expression |
|---|---|
| fvsetsid | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsval 17080 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ 𝑈) → (𝐹 sSet 〈𝑋, 𝑌〉) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})) | |
| 2 | 1 | 3adant2 1131 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝐹 sSet 〈𝑋, 𝑌〉) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})) |
| 3 | 2 | fveq1d 6830 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = (((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})‘𝑋)) |
| 4 | simp2 1137 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝑊) | |
| 5 | simp3 1138 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
| 6 | neldifsn 4743 | . . . . 5 ⊢ ¬ 𝑋 ∈ (V ∖ {𝑋}) | |
| 7 | dmres 5965 | . . . . . . 7 ⊢ dom (𝐹 ↾ (V ∖ {𝑋})) = ((V ∖ {𝑋}) ∩ dom 𝐹) | |
| 8 | inss1 4186 | . . . . . . 7 ⊢ ((V ∖ {𝑋}) ∩ dom 𝐹) ⊆ (V ∖ {𝑋}) | |
| 9 | 7, 8 | eqsstri 3977 | . . . . . 6 ⊢ dom (𝐹 ↾ (V ∖ {𝑋})) ⊆ (V ∖ {𝑋}) |
| 10 | 9 | sseli 3926 | . . . . 5 ⊢ (𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})) → 𝑋 ∈ (V ∖ {𝑋})) |
| 11 | 6, 10 | mto 197 | . . . 4 ⊢ ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})) |
| 12 | 11 | a1i 11 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))) |
| 13 | fsnunfv 7127 | . . 3 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ∧ ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})‘𝑋) = 𝑌) | |
| 14 | 4, 5, 12, 13 | syl3anc 1373 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})‘𝑋) = 𝑌) |
| 15 | 3, 14 | eqtrd 2768 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 {csn 4575 〈cop 4581 dom cdm 5619 ↾ cres 5621 ‘cfv 6486 (class class class)co 7352 sSet csts 17076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-sets 17077 |
| This theorem is referenced by: mdetunilem9 22536 |
| Copyright terms: Public domain | W3C validator |