MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsetsid Structured version   Visualization version   GIF version

Theorem fvsetsid 17202
Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.)
Assertion
Ref Expression
fvsetsid ((𝐹𝑉𝑋𝑊𝑌𝑈) → ((𝐹 sSet ⟨𝑋, 𝑌⟩)‘𝑋) = 𝑌)

Proof of Theorem fvsetsid
StepHypRef Expression
1 setsval 17201 . . . 4 ((𝐹𝑉𝑌𝑈) → (𝐹 sSet ⟨𝑋, 𝑌⟩) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
213adant2 1130 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → (𝐹 sSet ⟨𝑋, 𝑌⟩) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
32fveq1d 6909 . 2 ((𝐹𝑉𝑋𝑊𝑌𝑈) → ((𝐹 sSet ⟨𝑋, 𝑌⟩)‘𝑋) = (((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩})‘𝑋))
4 simp2 1136 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → 𝑋𝑊)
5 simp3 1137 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → 𝑌𝑈)
6 neldifsn 4797 . . . . 5 ¬ 𝑋 ∈ (V ∖ {𝑋})
7 dmres 6032 . . . . . . 7 dom (𝐹 ↾ (V ∖ {𝑋})) = ((V ∖ {𝑋}) ∩ dom 𝐹)
8 inss1 4245 . . . . . . 7 ((V ∖ {𝑋}) ∩ dom 𝐹) ⊆ (V ∖ {𝑋})
97, 8eqsstri 4030 . . . . . 6 dom (𝐹 ↾ (V ∖ {𝑋})) ⊆ (V ∖ {𝑋})
109sseli 3991 . . . . 5 (𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})) → 𝑋 ∈ (V ∖ {𝑋}))
116, 10mto 197 . . . 4 ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))
1211a1i 11 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})))
13 fsnunfv 7207 . . 3 ((𝑋𝑊𝑌𝑈 ∧ ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
144, 5, 12, 13syl3anc 1370 . 2 ((𝐹𝑉𝑋𝑊𝑌𝑈) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
153, 14eqtrd 2775 1 ((𝐹𝑉𝑋𝑊𝑌𝑈) → ((𝐹 sSet ⟨𝑋, 𝑌⟩)‘𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  cdif 3960  cun 3961  cin 3962  {csn 4631  cop 4637  dom cdm 5689  cres 5691  cfv 6563  (class class class)co 7431   sSet csts 17197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-sets 17198
This theorem is referenced by:  mdetunilem9  22642
  Copyright terms: Public domain W3C validator