MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsetsid Structured version   Visualization version   GIF version

Theorem fvsetsid 16865
Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.)
Assertion
Ref Expression
fvsetsid ((𝐹𝑉𝑋𝑊𝑌𝑈) → ((𝐹 sSet ⟨𝑋, 𝑌⟩)‘𝑋) = 𝑌)

Proof of Theorem fvsetsid
StepHypRef Expression
1 setsval 16864 . . . 4 ((𝐹𝑉𝑌𝑈) → (𝐹 sSet ⟨𝑋, 𝑌⟩) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
213adant2 1130 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → (𝐹 sSet ⟨𝑋, 𝑌⟩) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
32fveq1d 6771 . 2 ((𝐹𝑉𝑋𝑊𝑌𝑈) → ((𝐹 sSet ⟨𝑋, 𝑌⟩)‘𝑋) = (((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩})‘𝑋))
4 simp2 1136 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → 𝑋𝑊)
5 simp3 1137 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → 𝑌𝑈)
6 neldifsn 4731 . . . . 5 ¬ 𝑋 ∈ (V ∖ {𝑋})
7 dmres 5911 . . . . . . 7 dom (𝐹 ↾ (V ∖ {𝑋})) = ((V ∖ {𝑋}) ∩ dom 𝐹)
8 inss1 4168 . . . . . . 7 ((V ∖ {𝑋}) ∩ dom 𝐹) ⊆ (V ∖ {𝑋})
97, 8eqsstri 3960 . . . . . 6 dom (𝐹 ↾ (V ∖ {𝑋})) ⊆ (V ∖ {𝑋})
109sseli 3922 . . . . 5 (𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})) → 𝑋 ∈ (V ∖ {𝑋}))
116, 10mto 196 . . . 4 ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))
1211a1i 11 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})))
13 fsnunfv 7054 . . 3 ((𝑋𝑊𝑌𝑈 ∧ ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
144, 5, 12, 13syl3anc 1370 . 2 ((𝐹𝑉𝑋𝑊𝑌𝑈) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
153, 14eqtrd 2780 1 ((𝐹𝑉𝑋𝑊𝑌𝑈) → ((𝐹 sSet ⟨𝑋, 𝑌⟩)‘𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1542  wcel 2110  Vcvv 3431  cdif 3889  cun 3890  cin 3891  {csn 4567  cop 4573  dom cdm 5589  cres 5591  cfv 6431  (class class class)co 7269   sSet csts 16860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6389  df-fun 6433  df-fn 6434  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-sets 16861
This theorem is referenced by:  mdetunilem9  21765
  Copyright terms: Public domain W3C validator