Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acycgr2v Structured version   Visualization version   GIF version

Theorem acycgr2v 35186
Description: A simple graph with two vertices is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.)
Hypothesis
Ref Expression
acycgrv.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
acycgr2v ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → 𝐺 ∈ AcyclicGraph)

Proof of Theorem acycgr2v
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acycgrv.1 . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
21usgrcyclgt2v 35167 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → 2 < (♯‘𝑉))
3 2re 12194 . . . . . . . . . . 11 2 ∈ ℝ
43rexri 11165 . . . . . . . . . 10 2 ∈ ℝ*
51fvexi 6831 . . . . . . . . . . 11 𝑉 ∈ V
6 hashxrcl 14259 . . . . . . . . . . 11 (𝑉 ∈ V → (♯‘𝑉) ∈ ℝ*)
75, 6ax-mp 5 . . . . . . . . . 10 (♯‘𝑉) ∈ ℝ*
8 xrltne 13057 . . . . . . . . . 10 ((2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ* ∧ 2 < (♯‘𝑉)) → (♯‘𝑉) ≠ 2)
94, 7, 8mp3an12 1453 . . . . . . . . 9 (2 < (♯‘𝑉) → (♯‘𝑉) ≠ 2)
109neneqd 2933 . . . . . . . 8 (2 < (♯‘𝑉) → ¬ (♯‘𝑉) = 2)
112, 10syl 17 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ (♯‘𝑉) = 2)
12113expib 1122 . . . . . 6 (𝐺 ∈ USGraph → ((𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ (♯‘𝑉) = 2))
1312con2d 134 . . . . 5 (𝐺 ∈ USGraph → ((♯‘𝑉) = 2 → ¬ (𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
1413imp 406 . . . 4 ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → ¬ (𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
1514nexdv 1937 . . 3 ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → ¬ ∃𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
1615nexdv 1937 . 2 ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
17 isacycgr 35181 . . 3 (𝐺 ∈ USGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
1817adantr 480 . 2 ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
1916, 18mpbird 257 1 ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → 𝐺 ∈ AcyclicGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  Vcvv 3436  c0 4278   class class class wbr 5086  cfv 6476  *cxr 11140   < clt 11141  2c2 12175  chash 14232  Vtxcvtx 28969  USGraphcusgr 29122  Cyclesccycls 29758  AcyclicGraphcacycgr 35178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-hash 14233  df-word 14416  df-edg 29021  df-uhgr 29031  df-upgr 29055  df-umgr 29056  df-uspgr 29123  df-usgr 29124  df-wlks 29573  df-trls 29664  df-pths 29687  df-crcts 29759  df-cycls 29760  df-acycgr 35179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator