| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgr2v | Structured version Visualization version GIF version | ||
| Description: A simple graph with two vertices is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
| Ref | Expression |
|---|---|
| acycgrv.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| acycgr2v | ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → 𝐺 ∈ AcyclicGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acycgrv.1 | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | usgrcyclgt2v 35104 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → 2 < (♯‘𝑉)) |
| 3 | 2re 12202 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 4 | 3 | rexri 11173 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ* |
| 5 | 1 | fvexi 6836 | . . . . . . . . . . 11 ⊢ 𝑉 ∈ V |
| 6 | hashxrcl 14264 | . . . . . . . . . . 11 ⊢ (𝑉 ∈ V → (♯‘𝑉) ∈ ℝ*) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . . . . . 10 ⊢ (♯‘𝑉) ∈ ℝ* |
| 8 | xrltne 13065 | . . . . . . . . . 10 ⊢ ((2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ* ∧ 2 < (♯‘𝑉)) → (♯‘𝑉) ≠ 2) | |
| 9 | 4, 7, 8 | mp3an12 1453 | . . . . . . . . 9 ⊢ (2 < (♯‘𝑉) → (♯‘𝑉) ≠ 2) |
| 10 | 9 | neneqd 2930 | . . . . . . . 8 ⊢ (2 < (♯‘𝑉) → ¬ (♯‘𝑉) = 2) |
| 11 | 2, 10 | syl 17 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ (♯‘𝑉) = 2) |
| 12 | 11 | 3expib 1122 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ (♯‘𝑉) = 2)) |
| 13 | 12 | con2d 134 | . . . . 5 ⊢ (𝐺 ∈ USGraph → ((♯‘𝑉) = 2 → ¬ (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| 14 | 13 | imp 406 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → ¬ (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 15 | 14 | nexdv 1936 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → ¬ ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 16 | 15 | nexdv 1936 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 17 | isacycgr 35118 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | |
| 18 | 17 | adantr 480 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| 19 | 16, 18 | mpbird 257 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → 𝐺 ∈ AcyclicGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∅c0 4284 class class class wbr 5092 ‘cfv 6482 ℝ*cxr 11148 < clt 11149 2c2 12183 ♯chash 14237 Vtxcvtx 28941 USGraphcusgr 29094 Cyclesccycls 29730 AcyclicGraphcacycgr 35115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-edg 28993 df-uhgr 29003 df-upgr 29027 df-umgr 29028 df-uspgr 29095 df-usgr 29096 df-wlks 29545 df-trls 29636 df-pths 29659 df-crcts 29731 df-cycls 29732 df-acycgr 35116 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |