Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgr2v | Structured version Visualization version GIF version |
Description: A simple graph with two vertices is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
Ref | Expression |
---|---|
acycgrv.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
acycgr2v | ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → 𝐺 ∈ AcyclicGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acycgrv.1 | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | usgrcyclgt2v 32609 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → 2 < (♯‘𝑉)) |
3 | 2re 11748 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
4 | 3 | rexri 10737 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ* |
5 | 1 | fvexi 6672 | . . . . . . . . . . 11 ⊢ 𝑉 ∈ V |
6 | hashxrcl 13768 | . . . . . . . . . . 11 ⊢ (𝑉 ∈ V → (♯‘𝑉) ∈ ℝ*) | |
7 | 5, 6 | ax-mp 5 | . . . . . . . . . 10 ⊢ (♯‘𝑉) ∈ ℝ* |
8 | xrltne 12597 | . . . . . . . . . 10 ⊢ ((2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ* ∧ 2 < (♯‘𝑉)) → (♯‘𝑉) ≠ 2) | |
9 | 4, 7, 8 | mp3an12 1448 | . . . . . . . . 9 ⊢ (2 < (♯‘𝑉) → (♯‘𝑉) ≠ 2) |
10 | 9 | neneqd 2956 | . . . . . . . 8 ⊢ (2 < (♯‘𝑉) → ¬ (♯‘𝑉) = 2) |
11 | 2, 10 | syl 17 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ (♯‘𝑉) = 2) |
12 | 11 | 3expib 1119 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ (♯‘𝑉) = 2)) |
13 | 12 | con2d 136 | . . . . 5 ⊢ (𝐺 ∈ USGraph → ((♯‘𝑉) = 2 → ¬ (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
14 | 13 | imp 410 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → ¬ (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
15 | 14 | nexdv 1937 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → ¬ ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
16 | 15 | nexdv 1937 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
17 | isacycgr 32623 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | |
18 | 17 | adantr 484 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
19 | 16, 18 | mpbird 260 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → 𝐺 ∈ AcyclicGraph) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ≠ wne 2951 Vcvv 3409 ∅c0 4225 class class class wbr 5032 ‘cfv 6335 ℝ*cxr 10712 < clt 10713 2c2 11729 ♯chash 13740 Vtxcvtx 26888 USGraphcusgr 27041 Cyclesccycls 27673 AcyclicGraphcacycgr 32620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ifp 1059 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-oadd 8116 df-er 8299 df-map 8418 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-dju 9363 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-n0 11935 df-xnn0 12007 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 df-hash 13741 df-word 13914 df-edg 26940 df-uhgr 26950 df-upgr 26974 df-umgr 26975 df-uspgr 27042 df-usgr 27043 df-wlks 27488 df-trls 27581 df-pths 27604 df-crcts 27674 df-cycls 27675 df-acycgr 32621 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |