Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgr2v | Structured version Visualization version GIF version |
Description: A simple graph with two vertices is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
Ref | Expression |
---|---|
acycgrv.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
acycgr2v | ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → 𝐺 ∈ AcyclicGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acycgrv.1 | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | usgrcyclgt2v 33392 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → 2 < (♯‘𝑉)) |
3 | 2re 12148 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
4 | 3 | rexri 11134 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ* |
5 | 1 | fvexi 6839 | . . . . . . . . . . 11 ⊢ 𝑉 ∈ V |
6 | hashxrcl 14172 | . . . . . . . . . . 11 ⊢ (𝑉 ∈ V → (♯‘𝑉) ∈ ℝ*) | |
7 | 5, 6 | ax-mp 5 | . . . . . . . . . 10 ⊢ (♯‘𝑉) ∈ ℝ* |
8 | xrltne 12998 | . . . . . . . . . 10 ⊢ ((2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ* ∧ 2 < (♯‘𝑉)) → (♯‘𝑉) ≠ 2) | |
9 | 4, 7, 8 | mp3an12 1450 | . . . . . . . . 9 ⊢ (2 < (♯‘𝑉) → (♯‘𝑉) ≠ 2) |
10 | 9 | neneqd 2945 | . . . . . . . 8 ⊢ (2 < (♯‘𝑉) → ¬ (♯‘𝑉) = 2) |
11 | 2, 10 | syl 17 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ (♯‘𝑉) = 2) |
12 | 11 | 3expib 1121 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ (♯‘𝑉) = 2)) |
13 | 12 | con2d 134 | . . . . 5 ⊢ (𝐺 ∈ USGraph → ((♯‘𝑉) = 2 → ¬ (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
14 | 13 | imp 407 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → ¬ (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
15 | 14 | nexdv 1938 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → ¬ ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
16 | 15 | nexdv 1938 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
17 | isacycgr 33406 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | |
18 | 17 | adantr 481 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
19 | 16, 18 | mpbird 256 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → 𝐺 ∈ AcyclicGraph) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2940 Vcvv 3441 ∅c0 4269 class class class wbr 5092 ‘cfv 6479 ℝ*cxr 11109 < clt 11110 2c2 12129 ♯chash 14145 Vtxcvtx 27655 USGraphcusgr 27808 Cyclesccycls 28441 AcyclicGraphcacycgr 33403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-oadd 8371 df-er 8569 df-map 8688 df-pm 8689 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-fz 13341 df-fzo 13484 df-hash 14146 df-word 14318 df-edg 27707 df-uhgr 27717 df-upgr 27741 df-umgr 27742 df-uspgr 27809 df-usgr 27810 df-wlks 28255 df-trls 28348 df-pths 28372 df-crcts 28442 df-cycls 28443 df-acycgr 33404 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |