| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prclisacycgr | Structured version Visualization version GIF version | ||
| Description: A proper class (representing a null graph, see vtxvalprc 28948) has the property of an acyclic graph (see also acycgr0v 35108). (Contributed by BTernaryTau, 11-Oct-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prclisacycgr.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| prclisacycgr | ⊢ (¬ 𝐺 ∈ V → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prclisacycgr.1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | fvprc 6832 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = ∅) | |
| 3 | 1, 2 | eqtrid 2776 | . 2 ⊢ (¬ 𝐺 ∈ V → 𝑉 = ∅) |
| 4 | br0 5151 | . . . . . 6 ⊢ ¬ 𝑓∅𝑝 | |
| 5 | df-cycls 29690 | . . . . . . . . . 10 ⊢ Cycles = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Paths‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}) | |
| 6 | 5 | relmptopab 7619 | . . . . . . . . 9 ⊢ Rel (Cycles‘𝐺) |
| 7 | cycliswlk 29701 | . . . . . . . . . 10 ⊢ (𝑓(Cycles‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) | |
| 8 | df-br 5103 | . . . . . . . . . 10 ⊢ (𝑓(Cycles‘𝐺)𝑝 ↔ 〈𝑓, 𝑝〉 ∈ (Cycles‘𝐺)) | |
| 9 | df-br 5103 | . . . . . . . . . 10 ⊢ (𝑓(Walks‘𝐺)𝑝 ↔ 〈𝑓, 𝑝〉 ∈ (Walks‘𝐺)) | |
| 10 | 7, 8, 9 | 3imtr3i 291 | . . . . . . . . 9 ⊢ (〈𝑓, 𝑝〉 ∈ (Cycles‘𝐺) → 〈𝑓, 𝑝〉 ∈ (Walks‘𝐺)) |
| 11 | 6, 10 | relssi 5741 | . . . . . . . 8 ⊢ (Cycles‘𝐺) ⊆ (Walks‘𝐺) |
| 12 | 1 | eqeq1i 2734 | . . . . . . . . 9 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
| 13 | g0wlk0 29554 | . . . . . . . . 9 ⊢ ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅) | |
| 14 | 12, 13 | sylbi 217 | . . . . . . . 8 ⊢ (𝑉 = ∅ → (Walks‘𝐺) = ∅) |
| 15 | 11, 14 | sseqtrid 3986 | . . . . . . 7 ⊢ (𝑉 = ∅ → (Cycles‘𝐺) ⊆ ∅) |
| 16 | ss0 4361 | . . . . . . 7 ⊢ ((Cycles‘𝐺) ⊆ ∅ → (Cycles‘𝐺) = ∅) | |
| 17 | breq 5104 | . . . . . . . 8 ⊢ ((Cycles‘𝐺) = ∅ → (𝑓(Cycles‘𝐺)𝑝 ↔ 𝑓∅𝑝)) | |
| 18 | 17 | notbid 318 | . . . . . . 7 ⊢ ((Cycles‘𝐺) = ∅ → (¬ 𝑓(Cycles‘𝐺)𝑝 ↔ ¬ 𝑓∅𝑝)) |
| 19 | 15, 16, 18 | 3syl 18 | . . . . . 6 ⊢ (𝑉 = ∅ → (¬ 𝑓(Cycles‘𝐺)𝑝 ↔ ¬ 𝑓∅𝑝)) |
| 20 | 4, 19 | mpbiri 258 | . . . . 5 ⊢ (𝑉 = ∅ → ¬ 𝑓(Cycles‘𝐺)𝑝) |
| 21 | 20 | intnanrd 489 | . . . 4 ⊢ (𝑉 = ∅ → ¬ (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 22 | 21 | nexdv 1936 | . . 3 ⊢ (𝑉 = ∅ → ¬ ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 23 | 22 | nexdv 1936 | . 2 ⊢ (𝑉 = ∅ → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 24 | 3, 23 | syl 17 | 1 ⊢ (¬ 𝐺 ∈ V → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 〈cop 4591 class class class wbr 5102 ‘cfv 6499 0cc0 11044 ♯chash 14271 Vtxcvtx 28899 Walkscwlks 29500 Pathscpths 29613 Cyclesccycls 29688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-wlks 29503 df-trls 29594 df-pths 29617 df-cycls 29690 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |