| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prclisacycgr | Structured version Visualization version GIF version | ||
| Description: A proper class (representing a null graph, see vtxvalprc 29018) has the property of an acyclic graph (see also acycgr0v 35184). (Contributed by BTernaryTau, 11-Oct-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prclisacycgr.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| prclisacycgr | ⊢ (¬ 𝐺 ∈ V → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prclisacycgr.1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | fvprc 6809 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = ∅) | |
| 3 | 1, 2 | eqtrid 2778 | . 2 ⊢ (¬ 𝐺 ∈ V → 𝑉 = ∅) |
| 4 | br0 5135 | . . . . . 6 ⊢ ¬ 𝑓∅𝑝 | |
| 5 | df-cycls 29760 | . . . . . . . . . 10 ⊢ Cycles = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Paths‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}) | |
| 6 | 5 | relmptopab 7591 | . . . . . . . . 9 ⊢ Rel (Cycles‘𝐺) |
| 7 | cycliswlk 29771 | . . . . . . . . . 10 ⊢ (𝑓(Cycles‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) | |
| 8 | df-br 5087 | . . . . . . . . . 10 ⊢ (𝑓(Cycles‘𝐺)𝑝 ↔ 〈𝑓, 𝑝〉 ∈ (Cycles‘𝐺)) | |
| 9 | df-br 5087 | . . . . . . . . . 10 ⊢ (𝑓(Walks‘𝐺)𝑝 ↔ 〈𝑓, 𝑝〉 ∈ (Walks‘𝐺)) | |
| 10 | 7, 8, 9 | 3imtr3i 291 | . . . . . . . . 9 ⊢ (〈𝑓, 𝑝〉 ∈ (Cycles‘𝐺) → 〈𝑓, 𝑝〉 ∈ (Walks‘𝐺)) |
| 11 | 6, 10 | relssi 5722 | . . . . . . . 8 ⊢ (Cycles‘𝐺) ⊆ (Walks‘𝐺) |
| 12 | 1 | eqeq1i 2736 | . . . . . . . . 9 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
| 13 | g0wlk0 29624 | . . . . . . . . 9 ⊢ ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅) | |
| 14 | 12, 13 | sylbi 217 | . . . . . . . 8 ⊢ (𝑉 = ∅ → (Walks‘𝐺) = ∅) |
| 15 | 11, 14 | sseqtrid 3972 | . . . . . . 7 ⊢ (𝑉 = ∅ → (Cycles‘𝐺) ⊆ ∅) |
| 16 | ss0 4347 | . . . . . . 7 ⊢ ((Cycles‘𝐺) ⊆ ∅ → (Cycles‘𝐺) = ∅) | |
| 17 | breq 5088 | . . . . . . . 8 ⊢ ((Cycles‘𝐺) = ∅ → (𝑓(Cycles‘𝐺)𝑝 ↔ 𝑓∅𝑝)) | |
| 18 | 17 | notbid 318 | . . . . . . 7 ⊢ ((Cycles‘𝐺) = ∅ → (¬ 𝑓(Cycles‘𝐺)𝑝 ↔ ¬ 𝑓∅𝑝)) |
| 19 | 15, 16, 18 | 3syl 18 | . . . . . 6 ⊢ (𝑉 = ∅ → (¬ 𝑓(Cycles‘𝐺)𝑝 ↔ ¬ 𝑓∅𝑝)) |
| 20 | 4, 19 | mpbiri 258 | . . . . 5 ⊢ (𝑉 = ∅ → ¬ 𝑓(Cycles‘𝐺)𝑝) |
| 21 | 20 | intnanrd 489 | . . . 4 ⊢ (𝑉 = ∅ → ¬ (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 22 | 21 | nexdv 1937 | . . 3 ⊢ (𝑉 = ∅ → ¬ ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 23 | 22 | nexdv 1937 | . 2 ⊢ (𝑉 = ∅ → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 24 | 3, 23 | syl 17 | 1 ⊢ (¬ 𝐺 ∈ V → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3897 ∅c0 4278 〈cop 4577 class class class wbr 5086 ‘cfv 6476 0cc0 11001 ♯chash 14232 Vtxcvtx 28969 Walkscwlks 29570 Pathscpths 29683 Cyclesccycls 29758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-wlks 29573 df-trls 29664 df-pths 29687 df-cycls 29760 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |