| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prclisacycgr | Structured version Visualization version GIF version | ||
| Description: A proper class (representing a null graph, see vtxvalprc 29024) has the property of an acyclic graph (see also acycgr0v 35170). (Contributed by BTernaryTau, 11-Oct-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prclisacycgr.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| prclisacycgr | ⊢ (¬ 𝐺 ∈ V → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prclisacycgr.1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | fvprc 6868 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = ∅) | |
| 3 | 1, 2 | eqtrid 2782 | . 2 ⊢ (¬ 𝐺 ∈ V → 𝑉 = ∅) |
| 4 | br0 5168 | . . . . . 6 ⊢ ¬ 𝑓∅𝑝 | |
| 5 | df-cycls 29769 | . . . . . . . . . 10 ⊢ Cycles = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Paths‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}) | |
| 6 | 5 | relmptopab 7657 | . . . . . . . . 9 ⊢ Rel (Cycles‘𝐺) |
| 7 | cycliswlk 29780 | . . . . . . . . . 10 ⊢ (𝑓(Cycles‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) | |
| 8 | df-br 5120 | . . . . . . . . . 10 ⊢ (𝑓(Cycles‘𝐺)𝑝 ↔ 〈𝑓, 𝑝〉 ∈ (Cycles‘𝐺)) | |
| 9 | df-br 5120 | . . . . . . . . . 10 ⊢ (𝑓(Walks‘𝐺)𝑝 ↔ 〈𝑓, 𝑝〉 ∈ (Walks‘𝐺)) | |
| 10 | 7, 8, 9 | 3imtr3i 291 | . . . . . . . . 9 ⊢ (〈𝑓, 𝑝〉 ∈ (Cycles‘𝐺) → 〈𝑓, 𝑝〉 ∈ (Walks‘𝐺)) |
| 11 | 6, 10 | relssi 5766 | . . . . . . . 8 ⊢ (Cycles‘𝐺) ⊆ (Walks‘𝐺) |
| 12 | 1 | eqeq1i 2740 | . . . . . . . . 9 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
| 13 | g0wlk0 29632 | . . . . . . . . 9 ⊢ ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅) | |
| 14 | 12, 13 | sylbi 217 | . . . . . . . 8 ⊢ (𝑉 = ∅ → (Walks‘𝐺) = ∅) |
| 15 | 11, 14 | sseqtrid 4001 | . . . . . . 7 ⊢ (𝑉 = ∅ → (Cycles‘𝐺) ⊆ ∅) |
| 16 | ss0 4377 | . . . . . . 7 ⊢ ((Cycles‘𝐺) ⊆ ∅ → (Cycles‘𝐺) = ∅) | |
| 17 | breq 5121 | . . . . . . . 8 ⊢ ((Cycles‘𝐺) = ∅ → (𝑓(Cycles‘𝐺)𝑝 ↔ 𝑓∅𝑝)) | |
| 18 | 17 | notbid 318 | . . . . . . 7 ⊢ ((Cycles‘𝐺) = ∅ → (¬ 𝑓(Cycles‘𝐺)𝑝 ↔ ¬ 𝑓∅𝑝)) |
| 19 | 15, 16, 18 | 3syl 18 | . . . . . 6 ⊢ (𝑉 = ∅ → (¬ 𝑓(Cycles‘𝐺)𝑝 ↔ ¬ 𝑓∅𝑝)) |
| 20 | 4, 19 | mpbiri 258 | . . . . 5 ⊢ (𝑉 = ∅ → ¬ 𝑓(Cycles‘𝐺)𝑝) |
| 21 | 20 | intnanrd 489 | . . . 4 ⊢ (𝑉 = ∅ → ¬ (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 22 | 21 | nexdv 1936 | . . 3 ⊢ (𝑉 = ∅ → ¬ ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 23 | 22 | nexdv 1936 | . 2 ⊢ (𝑉 = ∅ → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 24 | 3, 23 | syl 17 | 1 ⊢ (¬ 𝐺 ∈ V → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 〈cop 4607 class class class wbr 5119 ‘cfv 6531 0cc0 11129 ♯chash 14348 Vtxcvtx 28975 Walkscwlks 29576 Pathscpths 29692 Cyclesccycls 29767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-wlks 29579 df-trls 29672 df-pths 29696 df-cycls 29769 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |