MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgredgnlp Structured version   Visualization version   GIF version

Theorem umgredgnlp 27566
Description: An edge of a multigraph is not a loop. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.)
Hypothesis
Ref Expression
umgredgnlp.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgredgnlp ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ¬ ∃𝑣 𝐶 = {𝑣})
Distinct variable groups:   𝑣,𝐶   𝑣,𝐸   𝑣,𝐺

Proof of Theorem umgredgnlp
StepHypRef Expression
1 vex 3441 . . . . . 6 𝑣 ∈ V
2 hashsng 14133 . . . . . 6 (𝑣 ∈ V → (♯‘{𝑣}) = 1)
3 1ne2 12231 . . . . . . . 8 1 ≠ 2
43neii 2943 . . . . . . 7 ¬ 1 = 2
5 eqeq1 2740 . . . . . . 7 ((♯‘{𝑣}) = 1 → ((♯‘{𝑣}) = 2 ↔ 1 = 2))
64, 5mtbiri 327 . . . . . 6 ((♯‘{𝑣}) = 1 → ¬ (♯‘{𝑣}) = 2)
71, 2, 6mp2b 10 . . . . 5 ¬ (♯‘{𝑣}) = 2
8 fveqeq2 6813 . . . . 5 (𝐶 = {𝑣} → ((♯‘𝐶) = 2 ↔ (♯‘{𝑣}) = 2))
97, 8mtbiri 327 . . . 4 (𝐶 = {𝑣} → ¬ (♯‘𝐶) = 2)
109intnand 490 . . 3 (𝐶 = {𝑣} → ¬ (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
11 umgredgnlp.e . . . . 5 𝐸 = (Edg‘𝐺)
1211eleq2i 2828 . . . 4 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
13 edgumgr 27554 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ (Edg‘𝐺)) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
1412, 13sylan2b 595 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
1510, 14nsyl3 138 . 2 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ¬ 𝐶 = {𝑣})
1615nexdv 1937 1 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ¬ ∃𝑣 𝐶 = {𝑣})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1539  wex 1779  wcel 2104  Vcvv 3437  𝒫 cpw 4539  {csn 4565  cfv 6458  1c1 10922  2c2 12078  chash 14094  Vtxcvtx 27415  Edgcedg 27466  UMGraphcumgr 27500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-card 9745  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-nn 12024  df-2 12086  df-n0 12284  df-z 12370  df-uz 12633  df-fz 13290  df-hash 14095  df-edg 27467  df-umgr 27502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator