MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgredgnlp Structured version   Visualization version   GIF version

Theorem umgredgnlp 28915
Description: An edge of a multigraph is not a loop. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.)
Hypothesis
Ref Expression
umgredgnlp.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgredgnlp ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ¬ ∃𝑣 𝐶 = {𝑣})
Distinct variable groups:   𝑣,𝐶   𝑣,𝐸   𝑣,𝐺

Proof of Theorem umgredgnlp
StepHypRef Expression
1 vex 3472 . . . . . 6 𝑣 ∈ V
2 hashsng 14334 . . . . . 6 (𝑣 ∈ V → (♯‘{𝑣}) = 1)
3 1ne2 12424 . . . . . . . 8 1 ≠ 2
43neii 2936 . . . . . . 7 ¬ 1 = 2
5 eqeq1 2730 . . . . . . 7 ((♯‘{𝑣}) = 1 → ((♯‘{𝑣}) = 2 ↔ 1 = 2))
64, 5mtbiri 327 . . . . . 6 ((♯‘{𝑣}) = 1 → ¬ (♯‘{𝑣}) = 2)
71, 2, 6mp2b 10 . . . . 5 ¬ (♯‘{𝑣}) = 2
8 fveqeq2 6894 . . . . 5 (𝐶 = {𝑣} → ((♯‘𝐶) = 2 ↔ (♯‘{𝑣}) = 2))
97, 8mtbiri 327 . . . 4 (𝐶 = {𝑣} → ¬ (♯‘𝐶) = 2)
109intnand 488 . . 3 (𝐶 = {𝑣} → ¬ (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
11 umgredgnlp.e . . . . 5 𝐸 = (Edg‘𝐺)
1211eleq2i 2819 . . . 4 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
13 edgumgr 28903 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ (Edg‘𝐺)) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
1412, 13sylan2b 593 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
1510, 14nsyl3 138 . 2 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ¬ 𝐶 = {𝑣})
1615nexdv 1931 1 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ¬ ∃𝑣 𝐶 = {𝑣})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wex 1773  wcel 2098  Vcvv 3468  𝒫 cpw 4597  {csn 4623  cfv 6537  1c1 11113  2c2 12271  chash 14295  Vtxcvtx 28764  Edgcedg 28815  UMGraphcumgr 28849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296  df-edg 28816  df-umgr 28851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator