MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthnum Structured version   Visualization version   GIF version

Theorem canthnum 10663
Description: The set of well-orderable subsets of a set 𝐴 strictly dominates 𝐴. A stronger form of canth2 9144. Corollary 1.4(a) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 19-May-2015.)
Assertion
Ref Expression
canthnum (𝐴𝑉𝐴 ≺ (𝒫 𝐴 ∩ dom card))

Proof of Theorem canthnum
Dummy variables 𝑓 𝑎 𝑟 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5348 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 inex1g 5289 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
3 infpwfidom 10042 . . . 4 ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
41, 2, 33syl 18 . . 3 (𝐴𝑉𝐴 ≼ (𝒫 𝐴 ∩ Fin))
5 inex1g 5289 . . . . 5 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ dom card) ∈ V)
61, 5syl 17 . . . 4 (𝐴𝑉 → (𝒫 𝐴 ∩ dom card) ∈ V)
7 finnum 9962 . . . . . 6 (𝑥 ∈ Fin → 𝑥 ∈ dom card)
87ssriv 3962 . . . . 5 Fin ⊆ dom card
9 sslin 4218 . . . . 5 (Fin ⊆ dom card → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐴 ∩ dom card))
108, 9ax-mp 5 . . . 4 (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐴 ∩ dom card)
11 ssdomg 9014 . . . 4 ((𝒫 𝐴 ∩ dom card) ∈ V → ((𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐴 ∩ dom card) → (𝒫 𝐴 ∩ Fin) ≼ (𝒫 𝐴 ∩ dom card)))
126, 10, 11mpisyl 21 . . 3 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ≼ (𝒫 𝐴 ∩ dom card))
13 domtr 9021 . . 3 ((𝐴 ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≼ (𝒫 𝐴 ∩ dom card)) → 𝐴 ≼ (𝒫 𝐴 ∩ dom card))
144, 12, 13syl2anc 584 . 2 (𝐴𝑉𝐴 ≼ (𝒫 𝐴 ∩ dom card))
15 eqid 2735 . . . . . . 7 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}
1615fpwwecbv 10658 . . . . . 6 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝑓‘(𝑠 “ {𝑧})) = 𝑧))}
17 eqid 2735 . . . . . 6 dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))} = dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}
18 eqid 2735 . . . . . 6 (({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}‘ dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}) “ {(𝑓 dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))})}) = (({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}‘ dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}) “ {(𝑓 dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))})})
1916, 17, 18canthnumlem 10662 . . . . 5 (𝐴𝑉 → ¬ 𝑓:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
20 f1of1 6817 . . . . 5 (𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴𝑓:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
2119, 20nsyl 140 . . . 4 (𝐴𝑉 → ¬ 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
2221nexdv 1936 . . 3 (𝐴𝑉 → ¬ ∃𝑓 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
23 ensym 9017 . . . 4 (𝐴 ≈ (𝒫 𝐴 ∩ dom card) → (𝒫 𝐴 ∩ dom card) ≈ 𝐴)
24 bren 8969 . . . 4 ((𝒫 𝐴 ∩ dom card) ≈ 𝐴 ↔ ∃𝑓 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
2523, 24sylib 218 . . 3 (𝐴 ≈ (𝒫 𝐴 ∩ dom card) → ∃𝑓 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
2622, 25nsyl 140 . 2 (𝐴𝑉 → ¬ 𝐴 ≈ (𝒫 𝐴 ∩ dom card))
27 brsdom 8989 . 2 (𝐴 ≺ (𝒫 𝐴 ∩ dom card) ↔ (𝐴 ≼ (𝒫 𝐴 ∩ dom card) ∧ ¬ 𝐴 ≈ (𝒫 𝐴 ∩ dom card)))
2814, 26, 27sylanbrc 583 1 (𝐴𝑉𝐴 ≺ (𝒫 𝐴 ∩ dom card))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3051  Vcvv 3459  cin 3925  wss 3926  𝒫 cpw 4575  {csn 4601   cuni 4883   class class class wbr 5119  {copab 5181   We wwe 5605   × cxp 5652  ccnv 5653  dom cdm 5654  cima 5657  1-1wf1 6528  1-1-ontowf1o 6530  cfv 6531  cen 8956  cdom 8957  csdm 8958  Fincfn 8959  cardccrd 9949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-oi 9524  df-card 9953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator