MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthnum Structured version   Visualization version   GIF version

Theorem canthnum 9724
Description: The set of well-orderable subsets of a set 𝐴 strictly dominates 𝐴. A stronger form of canth2 8320. Corollary 1.4(a) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 19-May-2015.)
Assertion
Ref Expression
canthnum (𝐴𝑉𝐴 ≺ (𝒫 𝐴 ∩ dom card))

Proof of Theorem canthnum
Dummy variables 𝑓 𝑎 𝑟 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5014 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 inex1g 4962 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
3 infpwfidom 9102 . . . 4 ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
41, 2, 33syl 18 . . 3 (𝐴𝑉𝐴 ≼ (𝒫 𝐴 ∩ Fin))
5 inex1g 4962 . . . . 5 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ dom card) ∈ V)
61, 5syl 17 . . . 4 (𝐴𝑉 → (𝒫 𝐴 ∩ dom card) ∈ V)
7 finnum 9025 . . . . . 6 (𝑥 ∈ Fin → 𝑥 ∈ dom card)
87ssriv 3765 . . . . 5 Fin ⊆ dom card
9 sslin 3998 . . . . 5 (Fin ⊆ dom card → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐴 ∩ dom card))
108, 9ax-mp 5 . . . 4 (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐴 ∩ dom card)
11 ssdomg 8206 . . . 4 ((𝒫 𝐴 ∩ dom card) ∈ V → ((𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐴 ∩ dom card) → (𝒫 𝐴 ∩ Fin) ≼ (𝒫 𝐴 ∩ dom card)))
126, 10, 11mpisyl 21 . . 3 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ≼ (𝒫 𝐴 ∩ dom card))
13 domtr 8213 . . 3 ((𝐴 ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≼ (𝒫 𝐴 ∩ dom card)) → 𝐴 ≼ (𝒫 𝐴 ∩ dom card))
144, 12, 13syl2anc 579 . 2 (𝐴𝑉𝐴 ≼ (𝒫 𝐴 ∩ dom card))
15 eqid 2765 . . . . . . 7 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}
1615fpwwecbv 9719 . . . . . 6 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝑓‘(𝑠 “ {𝑧})) = 𝑧))}
17 eqid 2765 . . . . . 6 dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))} = dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}
18 eqid 2765 . . . . . 6 (({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}‘ dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}) “ {(𝑓 dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))})}) = (({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}‘ dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}) “ {(𝑓 dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))})})
1916, 17, 18canthnumlem 9723 . . . . 5 (𝐴𝑉 → ¬ 𝑓:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
20 f1of1 6319 . . . . 5 (𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴𝑓:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
2119, 20nsyl 137 . . . 4 (𝐴𝑉 → ¬ 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
2221nexdv 2031 . . 3 (𝐴𝑉 → ¬ ∃𝑓 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
23 ensym 8209 . . . 4 (𝐴 ≈ (𝒫 𝐴 ∩ dom card) → (𝒫 𝐴 ∩ dom card) ≈ 𝐴)
24 bren 8169 . . . 4 ((𝒫 𝐴 ∩ dom card) ≈ 𝐴 ↔ ∃𝑓 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
2523, 24sylib 209 . . 3 (𝐴 ≈ (𝒫 𝐴 ∩ dom card) → ∃𝑓 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
2622, 25nsyl 137 . 2 (𝐴𝑉 → ¬ 𝐴 ≈ (𝒫 𝐴 ∩ dom card))
27 brsdom 8183 . 2 (𝐴 ≺ (𝒫 𝐴 ∩ dom card) ↔ (𝐴 ≼ (𝒫 𝐴 ∩ dom card) ∧ ¬ 𝐴 ≈ (𝒫 𝐴 ∩ dom card)))
2814, 26, 27sylanbrc 578 1 (𝐴𝑉𝐴 ≺ (𝒫 𝐴 ∩ dom card))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wex 1874  wcel 2155  wral 3055  Vcvv 3350  cin 3731  wss 3732  𝒫 cpw 4315  {csn 4334   cuni 4594   class class class wbr 4809  {copab 4871   We wwe 5235   × cxp 5275  ccnv 5276  dom cdm 5277  cima 5280  1-1wf1 6065  1-1-ontowf1o 6067  cfv 6068  cen 8157  cdom 8158  csdm 8159  Fincfn 8160  cardccrd 9012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-om 7264  df-1st 7366  df-wrecs 7610  df-recs 7672  df-1o 7764  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-oi 8622  df-card 9016
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator