MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthnum Structured version   Visualization version   GIF version

Theorem canthnum 10074
Description: The set of well-orderable subsets of a set 𝐴 strictly dominates 𝐴. A stronger form of canth2 8673. Corollary 1.4(a) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 19-May-2015.)
Assertion
Ref Expression
canthnum (𝐴𝑉𝐴 ≺ (𝒫 𝐴 ∩ dom card))

Proof of Theorem canthnum
Dummy variables 𝑓 𝑎 𝑟 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5282 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 inex1g 5226 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
3 infpwfidom 9457 . . . 4 ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
41, 2, 33syl 18 . . 3 (𝐴𝑉𝐴 ≼ (𝒫 𝐴 ∩ Fin))
5 inex1g 5226 . . . . 5 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ dom card) ∈ V)
61, 5syl 17 . . . 4 (𝐴𝑉 → (𝒫 𝐴 ∩ dom card) ∈ V)
7 finnum 9380 . . . . . 6 (𝑥 ∈ Fin → 𝑥 ∈ dom card)
87ssriv 3974 . . . . 5 Fin ⊆ dom card
9 sslin 4214 . . . . 5 (Fin ⊆ dom card → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐴 ∩ dom card))
108, 9ax-mp 5 . . . 4 (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐴 ∩ dom card)
11 ssdomg 8558 . . . 4 ((𝒫 𝐴 ∩ dom card) ∈ V → ((𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐴 ∩ dom card) → (𝒫 𝐴 ∩ Fin) ≼ (𝒫 𝐴 ∩ dom card)))
126, 10, 11mpisyl 21 . . 3 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ≼ (𝒫 𝐴 ∩ dom card))
13 domtr 8565 . . 3 ((𝐴 ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≼ (𝒫 𝐴 ∩ dom card)) → 𝐴 ≼ (𝒫 𝐴 ∩ dom card))
144, 12, 13syl2anc 586 . 2 (𝐴𝑉𝐴 ≼ (𝒫 𝐴 ∩ dom card))
15 eqid 2824 . . . . . . 7 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}
1615fpwwecbv 10069 . . . . . 6 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝑓‘(𝑠 “ {𝑧})) = 𝑧))}
17 eqid 2824 . . . . . 6 dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))} = dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}
18 eqid 2824 . . . . . 6 (({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}‘ dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}) “ {(𝑓 dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))})}) = (({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}‘ dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}) “ {(𝑓 dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))})})
1916, 17, 18canthnumlem 10073 . . . . 5 (𝐴𝑉 → ¬ 𝑓:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
20 f1of1 6617 . . . . 5 (𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴𝑓:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
2119, 20nsyl 142 . . . 4 (𝐴𝑉 → ¬ 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
2221nexdv 1936 . . 3 (𝐴𝑉 → ¬ ∃𝑓 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
23 ensym 8561 . . . 4 (𝐴 ≈ (𝒫 𝐴 ∩ dom card) → (𝒫 𝐴 ∩ dom card) ≈ 𝐴)
24 bren 8521 . . . 4 ((𝒫 𝐴 ∩ dom card) ≈ 𝐴 ↔ ∃𝑓 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
2523, 24sylib 220 . . 3 (𝐴 ≈ (𝒫 𝐴 ∩ dom card) → ∃𝑓 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
2622, 25nsyl 142 . 2 (𝐴𝑉 → ¬ 𝐴 ≈ (𝒫 𝐴 ∩ dom card))
27 brsdom 8535 . 2 (𝐴 ≺ (𝒫 𝐴 ∩ dom card) ↔ (𝐴 ≼ (𝒫 𝐴 ∩ dom card) ∧ ¬ 𝐴 ≈ (𝒫 𝐴 ∩ dom card)))
2814, 26, 27sylanbrc 585 1 (𝐴𝑉𝐴 ≺ (𝒫 𝐴 ∩ dom card))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wex 1779  wcel 2113  wral 3141  Vcvv 3497  cin 3938  wss 3939  𝒫 cpw 4542  {csn 4570   cuni 4841   class class class wbr 5069  {copab 5131   We wwe 5516   × cxp 5556  ccnv 5557  dom cdm 5558  cima 5561  1-1wf1 6355  1-1-ontowf1o 6357  cfv 6358  cen 8509  cdom 8510  csdm 8511  Fincfn 8512  cardccrd 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-om 7584  df-1st 7692  df-wrecs 7950  df-recs 8011  df-1o 8105  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-oi 8977  df-card 9371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator