MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthnum Structured version   Visualization version   GIF version

Theorem canthnum 10263
Description: The set of well-orderable subsets of a set 𝐴 strictly dominates 𝐴. A stronger form of canth2 8799. Corollary 1.4(a) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 19-May-2015.)
Assertion
Ref Expression
canthnum (𝐴𝑉𝐴 ≺ (𝒫 𝐴 ∩ dom card))

Proof of Theorem canthnum
Dummy variables 𝑓 𝑎 𝑟 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5271 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 inex1g 5212 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
3 infpwfidom 9642 . . . 4 ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
41, 2, 33syl 18 . . 3 (𝐴𝑉𝐴 ≼ (𝒫 𝐴 ∩ Fin))
5 inex1g 5212 . . . . 5 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ dom card) ∈ V)
61, 5syl 17 . . . 4 (𝐴𝑉 → (𝒫 𝐴 ∩ dom card) ∈ V)
7 finnum 9564 . . . . . 6 (𝑥 ∈ Fin → 𝑥 ∈ dom card)
87ssriv 3905 . . . . 5 Fin ⊆ dom card
9 sslin 4149 . . . . 5 (Fin ⊆ dom card → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐴 ∩ dom card))
108, 9ax-mp 5 . . . 4 (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐴 ∩ dom card)
11 ssdomg 8674 . . . 4 ((𝒫 𝐴 ∩ dom card) ∈ V → ((𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐴 ∩ dom card) → (𝒫 𝐴 ∩ Fin) ≼ (𝒫 𝐴 ∩ dom card)))
126, 10, 11mpisyl 21 . . 3 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ≼ (𝒫 𝐴 ∩ dom card))
13 domtr 8681 . . 3 ((𝐴 ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≼ (𝒫 𝐴 ∩ dom card)) → 𝐴 ≼ (𝒫 𝐴 ∩ dom card))
144, 12, 13syl2anc 587 . 2 (𝐴𝑉𝐴 ≼ (𝒫 𝐴 ∩ dom card))
15 eqid 2737 . . . . . . 7 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}
1615fpwwecbv 10258 . . . . . 6 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝑓‘(𝑠 “ {𝑧})) = 𝑧))}
17 eqid 2737 . . . . . 6 dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))} = dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}
18 eqid 2737 . . . . . 6 (({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}‘ dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}) “ {(𝑓 dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))})}) = (({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}‘ dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))}) “ {(𝑓 dom {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝑓‘(𝑟 “ {𝑦})) = 𝑦))})})
1916, 17, 18canthnumlem 10262 . . . . 5 (𝐴𝑉 → ¬ 𝑓:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
20 f1of1 6660 . . . . 5 (𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴𝑓:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
2119, 20nsyl 142 . . . 4 (𝐴𝑉 → ¬ 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
2221nexdv 1944 . . 3 (𝐴𝑉 → ¬ ∃𝑓 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
23 ensym 8677 . . . 4 (𝐴 ≈ (𝒫 𝐴 ∩ dom card) → (𝒫 𝐴 ∩ dom card) ≈ 𝐴)
24 bren 8636 . . . 4 ((𝒫 𝐴 ∩ dom card) ≈ 𝐴 ↔ ∃𝑓 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
2523, 24sylib 221 . . 3 (𝐴 ≈ (𝒫 𝐴 ∩ dom card) → ∃𝑓 𝑓:(𝒫 𝐴 ∩ dom card)–1-1-onto𝐴)
2622, 25nsyl 142 . 2 (𝐴𝑉 → ¬ 𝐴 ≈ (𝒫 𝐴 ∩ dom card))
27 brsdom 8651 . 2 (𝐴 ≺ (𝒫 𝐴 ∩ dom card) ↔ (𝐴 ≼ (𝒫 𝐴 ∩ dom card) ∧ ¬ 𝐴 ≈ (𝒫 𝐴 ∩ dom card)))
2814, 26, 27sylanbrc 586 1 (𝐴𝑉𝐴 ≺ (𝒫 𝐴 ∩ dom card))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2110  wral 3061  Vcvv 3408  cin 3865  wss 3866  𝒫 cpw 4513  {csn 4541   cuni 4819   class class class wbr 5053  {copab 5115   We wwe 5508   × cxp 5549  ccnv 5550  dom cdm 5551  cima 5554  1-1wf1 6377  1-1-ontowf1o 6379  cfv 6380  cen 8623  cdom 8624  csdm 8625  Fincfn 8626  cardccrd 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-om 7645  df-1st 7761  df-wrecs 8047  df-recs 8108  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-oi 9126  df-card 9555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator