MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsuc Structured version   Visualization version   GIF version

Theorem cfsuc 9281
Description: Value of the cofinality function at a successor ordinal. Exercise 3 of [TakeutiZaring] p. 102. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 12-Feb-2013.)
Assertion
Ref Expression
cfsuc (𝐴 ∈ On → (cf‘suc 𝐴) = 1𝑜)

Proof of Theorem cfsuc
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sucelon 7164 . . 3 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
2 cfval 9271 . . 3 (suc 𝐴 ∈ On → (cf‘suc 𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
31, 2sylbi 207 . 2 (𝐴 ∈ On → (cf‘suc 𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
4 cardsn 8995 . . . . . 6 (𝐴 ∈ On → (card‘{𝐴}) = 1𝑜)
54eqcomd 2777 . . . . 5 (𝐴 ∈ On → 1𝑜 = (card‘{𝐴}))
6 snidg 4345 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ∈ {𝐴})
7 elsuci 5934 . . . . . . . . 9 (𝑧 ∈ suc 𝐴 → (𝑧𝐴𝑧 = 𝐴))
8 onelss 5909 . . . . . . . . . 10 (𝐴 ∈ On → (𝑧𝐴𝑧𝐴))
9 eqimss 3806 . . . . . . . . . . 11 (𝑧 = 𝐴𝑧𝐴)
109a1i 11 . . . . . . . . . 10 (𝐴 ∈ On → (𝑧 = 𝐴𝑧𝐴))
118, 10jaod 848 . . . . . . . . 9 (𝐴 ∈ On → ((𝑧𝐴𝑧 = 𝐴) → 𝑧𝐴))
127, 11syl5 34 . . . . . . . 8 (𝐴 ∈ On → (𝑧 ∈ suc 𝐴𝑧𝐴))
13 sseq2 3776 . . . . . . . . 9 (𝑤 = 𝐴 → (𝑧𝑤𝑧𝐴))
1413rspcev 3460 . . . . . . . 8 ((𝐴 ∈ {𝐴} ∧ 𝑧𝐴) → ∃𝑤 ∈ {𝐴}𝑧𝑤)
156, 12, 14syl6an 663 . . . . . . 7 (𝐴 ∈ On → (𝑧 ∈ suc 𝐴 → ∃𝑤 ∈ {𝐴}𝑧𝑤))
1615ralrimiv 3114 . . . . . 6 (𝐴 ∈ On → ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)
17 ssun2 3928 . . . . . . 7 {𝐴} ⊆ (𝐴 ∪ {𝐴})
18 df-suc 5872 . . . . . . 7 suc 𝐴 = (𝐴 ∪ {𝐴})
1917, 18sseqtr4i 3787 . . . . . 6 {𝐴} ⊆ suc 𝐴
2016, 19jctil 509 . . . . 5 (𝐴 ∈ On → ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))
21 snex 5036 . . . . . 6 {𝐴} ∈ V
22 fveq2 6332 . . . . . . . 8 (𝑦 = {𝐴} → (card‘𝑦) = (card‘{𝐴}))
2322eqeq2d 2781 . . . . . . 7 (𝑦 = {𝐴} → (1𝑜 = (card‘𝑦) ↔ 1𝑜 = (card‘{𝐴})))
24 sseq1 3775 . . . . . . . 8 (𝑦 = {𝐴} → (𝑦 ⊆ suc 𝐴 ↔ {𝐴} ⊆ suc 𝐴))
25 rexeq 3288 . . . . . . . . 9 (𝑦 = {𝐴} → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤 ∈ {𝐴}𝑧𝑤))
2625ralbidv 3135 . . . . . . . 8 (𝑦 = {𝐴} → (∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))
2724, 26anbi12d 616 . . . . . . 7 (𝑦 = {𝐴} → ((𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤) ↔ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)))
2823, 27anbi12d 616 . . . . . 6 (𝑦 = {𝐴} → ((1𝑜 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (1𝑜 = (card‘{𝐴}) ∧ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))))
2921, 28spcev 3451 . . . . 5 ((1𝑜 = (card‘{𝐴}) ∧ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)) → ∃𝑦(1𝑜 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
305, 20, 29syl2anc 573 . . . 4 (𝐴 ∈ On → ∃𝑦(1𝑜 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
31 1oex 7721 . . . . 5 1𝑜 ∈ V
32 eqeq1 2775 . . . . . . 7 (𝑥 = 1𝑜 → (𝑥 = (card‘𝑦) ↔ 1𝑜 = (card‘𝑦)))
3332anbi1d 615 . . . . . 6 (𝑥 = 1𝑜 → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (1𝑜 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
3433exbidv 2002 . . . . 5 (𝑥 = 1𝑜 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(1𝑜 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
3531, 34elab 3501 . . . 4 (1𝑜 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(1𝑜 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
3630, 35sylibr 224 . . 3 (𝐴 ∈ On → 1𝑜 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
37 el1o 7733 . . . . 5 (𝑣 ∈ 1𝑜𝑣 = ∅)
38 eqcom 2778 . . . . . . . . . . . . . . 15 (∅ = (card‘𝑦) ↔ (card‘𝑦) = ∅)
39 vex 3354 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
40 onssnum 9063 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom card)
4139, 40mpan 670 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ On → 𝑦 ∈ dom card)
42 cardnueq0 8990 . . . . . . . . . . . . . . . 16 (𝑦 ∈ dom card → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
4341, 42syl 17 . . . . . . . . . . . . . . 15 (𝑦 ⊆ On → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
4438, 43syl5bb 272 . . . . . . . . . . . . . 14 (𝑦 ⊆ On → (∅ = (card‘𝑦) ↔ 𝑦 = ∅))
4544biimpa 462 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → 𝑦 = ∅)
46 rex0 4085 . . . . . . . . . . . . . . . . 17 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤
4746a1i 11 . . . . . . . . . . . . . . . 16 (𝑧 ∈ suc 𝐴 → ¬ ∃𝑤 ∈ ∅ 𝑧𝑤)
4847nrex 3148 . . . . . . . . . . . . . . 15 ¬ ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤
49 nsuceq0 5948 . . . . . . . . . . . . . . . 16 suc 𝐴 ≠ ∅
50 r19.2z 4201 . . . . . . . . . . . . . . . 16 ((suc 𝐴 ≠ ∅ ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤) → ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤)
5149, 50mpan 670 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤 → ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤)
5248, 51mto 188 . . . . . . . . . . . . . 14 ¬ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤
53 rexeq 3288 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤 ∈ ∅ 𝑧𝑤))
5453ralbidv 3135 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤))
5552, 54mtbiri 316 . . . . . . . . . . . . 13 (𝑦 = ∅ → ¬ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)
5645, 55syl 17 . . . . . . . . . . . 12 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)
5756intnand 476 . . . . . . . . . . 11 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
58 imnan 386 . . . . . . . . . . 11 (((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ¬ ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
5957, 58mpbi 220 . . . . . . . . . 10 ¬ ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
60 suceloni 7160 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → suc 𝐴 ∈ On)
61 onss 7137 . . . . . . . . . . . . . . . . 17 (suc 𝐴 ∈ On → suc 𝐴 ⊆ On)
62 sstr 3760 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ suc 𝐴 ∧ suc 𝐴 ⊆ On) → 𝑦 ⊆ On)
6361, 62sylan2 580 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ suc 𝐴 ∧ suc 𝐴 ∈ On) → 𝑦 ⊆ On)
6460, 63sylan2 580 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ suc 𝐴𝐴 ∈ On) → 𝑦 ⊆ On)
6564ancoms 455 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ⊆ suc 𝐴) → 𝑦 ⊆ On)
6665adantrr 696 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑦 ⊆ On)
67663adant2 1125 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑦 ⊆ On)
68 simp2 1131 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ∅ = (card‘𝑦))
69 simp3 1132 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
7067, 68, 69jca31 504 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
71703expib 1116 . . . . . . . . . 10 (𝐴 ∈ On → ((∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7259, 71mtoi 190 . . . . . . . . 9 (𝐴 ∈ On → ¬ (∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
7372nexdv 2016 . . . . . . . 8 (𝐴 ∈ On → ¬ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
74 0ex 4924 . . . . . . . . 9 ∅ ∈ V
75 eqeq1 2775 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥 = (card‘𝑦) ↔ ∅ = (card‘𝑦)))
7675anbi1d 615 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7776exbidv 2002 . . . . . . . . 9 (𝑥 = ∅ → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7874, 77elab 3501 . . . . . . . 8 (∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
7973, 78sylnibr 318 . . . . . . 7 (𝐴 ∈ On → ¬ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8079adantr 466 . . . . . 6 ((𝐴 ∈ On ∧ 𝑣 = ∅) → ¬ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
81 eleq1 2838 . . . . . . 7 (𝑣 = ∅ → (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
8281adantl 467 . . . . . 6 ((𝐴 ∈ On ∧ 𝑣 = ∅) → (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
8380, 82mtbird 314 . . . . 5 ((𝐴 ∈ On ∧ 𝑣 = ∅) → ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8437, 83sylan2b 581 . . . 4 ((𝐴 ∈ On ∧ 𝑣 ∈ 1𝑜) → ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8584ralrimiva 3115 . . 3 (𝐴 ∈ On → ∀𝑣 ∈ 1𝑜 ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
86 cardon 8970 . . . . . . . 8 (card‘𝑦) ∈ On
87 eleq1 2838 . . . . . . . 8 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
8886, 87mpbiri 248 . . . . . . 7 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
8988adantr 466 . . . . . 6 ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑥 ∈ On)
9089exlimiv 2010 . . . . 5 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑥 ∈ On)
9190abssi 3826 . . . 4 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ⊆ On
92 oneqmini 5919 . . . 4 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ⊆ On → ((1𝑜 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ∧ ∀𝑣 ∈ 1𝑜 ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}) → 1𝑜 = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
9391, 92ax-mp 5 . . 3 ((1𝑜 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ∧ ∀𝑣 ∈ 1𝑜 ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}) → 1𝑜 = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
9436, 85, 93syl2anc 573 . 2 (𝐴 ∈ On → 1𝑜 = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
953, 94eqtr4d 2808 1 (𝐴 ∈ On → (cf‘suc 𝐴) = 1𝑜)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wex 1852  wcel 2145  {cab 2757  wne 2943  wral 3061  wrex 3062  Vcvv 3351  cun 3721  wss 3723  c0 4063  {csn 4316   cint 4611  dom cdm 5249  Oncon0 5866  suc csuc 5868  cfv 6031  1𝑜c1o 7706  cardccrd 8961  cfccf 8963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-om 7213  df-wrecs 7559  df-recs 7621  df-1o 7713  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-cf 8967
This theorem is referenced by:  cflim2  9287  cfpwsdom  9608  rankcf  9801
  Copyright terms: Public domain W3C validator