MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsuc Structured version   Visualization version   GIF version

Theorem cfsuc 10271
Description: Value of the cofinality function at a successor ordinal. Exercise 3 of [TakeutiZaring] p. 102. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 12-Feb-2013.)
Assertion
Ref Expression
cfsuc (𝐴 ∈ On → (cf‘suc 𝐴) = 1o)

Proof of Theorem cfsuc
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onsucb 7811 . . 3 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
2 cfval 10261 . . 3 (suc 𝐴 ∈ On → (cf‘suc 𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
31, 2sylbi 217 . 2 (𝐴 ∈ On → (cf‘suc 𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
4 cardsn 9983 . . . . . 6 (𝐴 ∈ On → (card‘{𝐴}) = 1o)
54eqcomd 2741 . . . . 5 (𝐴 ∈ On → 1o = (card‘{𝐴}))
6 snidg 4636 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ∈ {𝐴})
7 elsuci 6421 . . . . . . . . 9 (𝑧 ∈ suc 𝐴 → (𝑧𝐴𝑧 = 𝐴))
8 onelss 6394 . . . . . . . . . 10 (𝐴 ∈ On → (𝑧𝐴𝑧𝐴))
9 eqimss 4017 . . . . . . . . . . 11 (𝑧 = 𝐴𝑧𝐴)
109a1i 11 . . . . . . . . . 10 (𝐴 ∈ On → (𝑧 = 𝐴𝑧𝐴))
118, 10jaod 859 . . . . . . . . 9 (𝐴 ∈ On → ((𝑧𝐴𝑧 = 𝐴) → 𝑧𝐴))
127, 11syl5 34 . . . . . . . 8 (𝐴 ∈ On → (𝑧 ∈ suc 𝐴𝑧𝐴))
13 sseq2 3985 . . . . . . . . 9 (𝑤 = 𝐴 → (𝑧𝑤𝑧𝐴))
1413rspcev 3601 . . . . . . . 8 ((𝐴 ∈ {𝐴} ∧ 𝑧𝐴) → ∃𝑤 ∈ {𝐴}𝑧𝑤)
156, 12, 14syl6an 684 . . . . . . 7 (𝐴 ∈ On → (𝑧 ∈ suc 𝐴 → ∃𝑤 ∈ {𝐴}𝑧𝑤))
1615ralrimiv 3131 . . . . . 6 (𝐴 ∈ On → ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)
17 ssun2 4154 . . . . . . 7 {𝐴} ⊆ (𝐴 ∪ {𝐴})
18 df-suc 6358 . . . . . . 7 suc 𝐴 = (𝐴 ∪ {𝐴})
1917, 18sseqtrri 4008 . . . . . 6 {𝐴} ⊆ suc 𝐴
2016, 19jctil 519 . . . . 5 (𝐴 ∈ On → ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))
21 snex 5406 . . . . . 6 {𝐴} ∈ V
22 fveq2 6876 . . . . . . . 8 (𝑦 = {𝐴} → (card‘𝑦) = (card‘{𝐴}))
2322eqeq2d 2746 . . . . . . 7 (𝑦 = {𝐴} → (1o = (card‘𝑦) ↔ 1o = (card‘{𝐴})))
24 sseq1 3984 . . . . . . . 8 (𝑦 = {𝐴} → (𝑦 ⊆ suc 𝐴 ↔ {𝐴} ⊆ suc 𝐴))
25 rexeq 3301 . . . . . . . . 9 (𝑦 = {𝐴} → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤 ∈ {𝐴}𝑧𝑤))
2625ralbidv 3163 . . . . . . . 8 (𝑦 = {𝐴} → (∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))
2724, 26anbi12d 632 . . . . . . 7 (𝑦 = {𝐴} → ((𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤) ↔ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)))
2823, 27anbi12d 632 . . . . . 6 (𝑦 = {𝐴} → ((1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (1o = (card‘{𝐴}) ∧ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))))
2921, 28spcev 3585 . . . . 5 ((1o = (card‘{𝐴}) ∧ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)) → ∃𝑦(1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
305, 20, 29syl2anc 584 . . . 4 (𝐴 ∈ On → ∃𝑦(1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
31 1oex 8490 . . . . 5 1o ∈ V
32 eqeq1 2739 . . . . . . 7 (𝑥 = 1o → (𝑥 = (card‘𝑦) ↔ 1o = (card‘𝑦)))
3332anbi1d 631 . . . . . 6 (𝑥 = 1o → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
3433exbidv 1921 . . . . 5 (𝑥 = 1o → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
3531, 34elab 3658 . . . 4 (1o ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
3630, 35sylibr 234 . . 3 (𝐴 ∈ On → 1o ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
37 el1o 8507 . . . . 5 (𝑣 ∈ 1o𝑣 = ∅)
38 eqcom 2742 . . . . . . . . . . . . . . 15 (∅ = (card‘𝑦) ↔ (card‘𝑦) = ∅)
39 vex 3463 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
40 onssnum 10054 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom card)
4139, 40mpan 690 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ On → 𝑦 ∈ dom card)
42 cardnueq0 9978 . . . . . . . . . . . . . . . 16 (𝑦 ∈ dom card → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
4341, 42syl 17 . . . . . . . . . . . . . . 15 (𝑦 ⊆ On → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
4438, 43bitrid 283 . . . . . . . . . . . . . 14 (𝑦 ⊆ On → (∅ = (card‘𝑦) ↔ 𝑦 = ∅))
4544biimpa 476 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → 𝑦 = ∅)
46 rex0 4335 . . . . . . . . . . . . . . . . 17 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤
4746a1i 11 . . . . . . . . . . . . . . . 16 (𝑧 ∈ suc 𝐴 → ¬ ∃𝑤 ∈ ∅ 𝑧𝑤)
4847nrex 3064 . . . . . . . . . . . . . . 15 ¬ ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤
49 nsuceq0 6437 . . . . . . . . . . . . . . . 16 suc 𝐴 ≠ ∅
50 r19.2z 4470 . . . . . . . . . . . . . . . 16 ((suc 𝐴 ≠ ∅ ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤) → ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤)
5149, 50mpan 690 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤 → ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤)
5248, 51mto 197 . . . . . . . . . . . . . 14 ¬ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤
53 rexeq 3301 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤 ∈ ∅ 𝑧𝑤))
5453ralbidv 3163 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤))
5552, 54mtbiri 327 . . . . . . . . . . . . 13 (𝑦 = ∅ → ¬ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)
5645, 55syl 17 . . . . . . . . . . . 12 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)
5756intnand 488 . . . . . . . . . . 11 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
58 imnan 399 . . . . . . . . . . 11 (((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ¬ ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
5957, 58mpbi 230 . . . . . . . . . 10 ¬ ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
60 onsuc 7805 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → suc 𝐴 ∈ On)
61 onss 7779 . . . . . . . . . . . . . . . . 17 (suc 𝐴 ∈ On → suc 𝐴 ⊆ On)
62 sstr 3967 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ suc 𝐴 ∧ suc 𝐴 ⊆ On) → 𝑦 ⊆ On)
6361, 62sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ suc 𝐴 ∧ suc 𝐴 ∈ On) → 𝑦 ⊆ On)
6460, 63sylan2 593 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ suc 𝐴𝐴 ∈ On) → 𝑦 ⊆ On)
6564ancoms 458 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ⊆ suc 𝐴) → 𝑦 ⊆ On)
6665adantrr 717 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑦 ⊆ On)
67663adant2 1131 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑦 ⊆ On)
68 simp2 1137 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ∅ = (card‘𝑦))
69 simp3 1138 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
7067, 68, 69jca31 514 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
71703expib 1122 . . . . . . . . . 10 (𝐴 ∈ On → ((∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7259, 71mtoi 199 . . . . . . . . 9 (𝐴 ∈ On → ¬ (∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
7372nexdv 1936 . . . . . . . 8 (𝐴 ∈ On → ¬ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
74 0ex 5277 . . . . . . . . 9 ∅ ∈ V
75 eqeq1 2739 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥 = (card‘𝑦) ↔ ∅ = (card‘𝑦)))
7675anbi1d 631 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7776exbidv 1921 . . . . . . . . 9 (𝑥 = ∅ → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7874, 77elab 3658 . . . . . . . 8 (∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
7973, 78sylnibr 329 . . . . . . 7 (𝐴 ∈ On → ¬ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8079adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝑣 = ∅) → ¬ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
81 eleq1 2822 . . . . . . 7 (𝑣 = ∅ → (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
8281adantl 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝑣 = ∅) → (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
8380, 82mtbird 325 . . . . 5 ((𝐴 ∈ On ∧ 𝑣 = ∅) → ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8437, 83sylan2b 594 . . . 4 ((𝐴 ∈ On ∧ 𝑣 ∈ 1o) → ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8584ralrimiva 3132 . . 3 (𝐴 ∈ On → ∀𝑣 ∈ 1o ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
86 cardon 9958 . . . . . . . 8 (card‘𝑦) ∈ On
87 eleq1 2822 . . . . . . . 8 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
8886, 87mpbiri 258 . . . . . . 7 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
8988adantr 480 . . . . . 6 ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑥 ∈ On)
9089exlimiv 1930 . . . . 5 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑥 ∈ On)
9190abssi 4045 . . . 4 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ⊆ On
92 oneqmini 6405 . . . 4 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ⊆ On → ((1o ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ∧ ∀𝑣 ∈ 1o ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}) → 1o = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
9391, 92ax-mp 5 . . 3 ((1o ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ∧ ∀𝑣 ∈ 1o ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}) → 1o = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
9436, 85, 93syl2anc 584 . 2 (𝐴 ∈ On → 1o = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
953, 94eqtr4d 2773 1 (𝐴 ∈ On → (cf‘suc 𝐴) = 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wne 2932  wral 3051  wrex 3060  Vcvv 3459  cun 3924  wss 3926  c0 4308  {csn 4601   cint 4922  dom cdm 5654  Oncon0 6352  suc csuc 6354  cfv 6531  1oc1o 8473  cardccrd 9949  cfccf 9951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-cf 9955
This theorem is referenced by:  cflim2  10277  cfpwsdom  10598  rankcf  10791
  Copyright terms: Public domain W3C validator