MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsuc Structured version   Visualization version   GIF version

Theorem cfsuc 9944
Description: Value of the cofinality function at a successor ordinal. Exercise 3 of [TakeutiZaring] p. 102. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 12-Feb-2013.)
Assertion
Ref Expression
cfsuc (𝐴 ∈ On → (cf‘suc 𝐴) = 1o)

Proof of Theorem cfsuc
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sucelon 7639 . . 3 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
2 cfval 9934 . . 3 (suc 𝐴 ∈ On → (cf‘suc 𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
31, 2sylbi 216 . 2 (𝐴 ∈ On → (cf‘suc 𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
4 cardsn 9658 . . . . . 6 (𝐴 ∈ On → (card‘{𝐴}) = 1o)
54eqcomd 2744 . . . . 5 (𝐴 ∈ On → 1o = (card‘{𝐴}))
6 snidg 4592 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ∈ {𝐴})
7 elsuci 6317 . . . . . . . . 9 (𝑧 ∈ suc 𝐴 → (𝑧𝐴𝑧 = 𝐴))
8 onelss 6293 . . . . . . . . . 10 (𝐴 ∈ On → (𝑧𝐴𝑧𝐴))
9 eqimss 3973 . . . . . . . . . . 11 (𝑧 = 𝐴𝑧𝐴)
109a1i 11 . . . . . . . . . 10 (𝐴 ∈ On → (𝑧 = 𝐴𝑧𝐴))
118, 10jaod 855 . . . . . . . . 9 (𝐴 ∈ On → ((𝑧𝐴𝑧 = 𝐴) → 𝑧𝐴))
127, 11syl5 34 . . . . . . . 8 (𝐴 ∈ On → (𝑧 ∈ suc 𝐴𝑧𝐴))
13 sseq2 3943 . . . . . . . . 9 (𝑤 = 𝐴 → (𝑧𝑤𝑧𝐴))
1413rspcev 3552 . . . . . . . 8 ((𝐴 ∈ {𝐴} ∧ 𝑧𝐴) → ∃𝑤 ∈ {𝐴}𝑧𝑤)
156, 12, 14syl6an 680 . . . . . . 7 (𝐴 ∈ On → (𝑧 ∈ suc 𝐴 → ∃𝑤 ∈ {𝐴}𝑧𝑤))
1615ralrimiv 3106 . . . . . 6 (𝐴 ∈ On → ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)
17 ssun2 4103 . . . . . . 7 {𝐴} ⊆ (𝐴 ∪ {𝐴})
18 df-suc 6257 . . . . . . 7 suc 𝐴 = (𝐴 ∪ {𝐴})
1917, 18sseqtrri 3954 . . . . . 6 {𝐴} ⊆ suc 𝐴
2016, 19jctil 519 . . . . 5 (𝐴 ∈ On → ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))
21 snex 5349 . . . . . 6 {𝐴} ∈ V
22 fveq2 6756 . . . . . . . 8 (𝑦 = {𝐴} → (card‘𝑦) = (card‘{𝐴}))
2322eqeq2d 2749 . . . . . . 7 (𝑦 = {𝐴} → (1o = (card‘𝑦) ↔ 1o = (card‘{𝐴})))
24 sseq1 3942 . . . . . . . 8 (𝑦 = {𝐴} → (𝑦 ⊆ suc 𝐴 ↔ {𝐴} ⊆ suc 𝐴))
25 rexeq 3334 . . . . . . . . 9 (𝑦 = {𝐴} → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤 ∈ {𝐴}𝑧𝑤))
2625ralbidv 3120 . . . . . . . 8 (𝑦 = {𝐴} → (∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))
2724, 26anbi12d 630 . . . . . . 7 (𝑦 = {𝐴} → ((𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤) ↔ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)))
2823, 27anbi12d 630 . . . . . 6 (𝑦 = {𝐴} → ((1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (1o = (card‘{𝐴}) ∧ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))))
2921, 28spcev 3535 . . . . 5 ((1o = (card‘{𝐴}) ∧ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)) → ∃𝑦(1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
305, 20, 29syl2anc 583 . . . 4 (𝐴 ∈ On → ∃𝑦(1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
31 1oex 8280 . . . . 5 1o ∈ V
32 eqeq1 2742 . . . . . . 7 (𝑥 = 1o → (𝑥 = (card‘𝑦) ↔ 1o = (card‘𝑦)))
3332anbi1d 629 . . . . . 6 (𝑥 = 1o → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
3433exbidv 1925 . . . . 5 (𝑥 = 1o → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
3531, 34elab 3602 . . . 4 (1o ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
3630, 35sylibr 233 . . 3 (𝐴 ∈ On → 1o ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
37 el1o 8291 . . . . 5 (𝑣 ∈ 1o𝑣 = ∅)
38 eqcom 2745 . . . . . . . . . . . . . . 15 (∅ = (card‘𝑦) ↔ (card‘𝑦) = ∅)
39 vex 3426 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
40 onssnum 9727 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom card)
4139, 40mpan 686 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ On → 𝑦 ∈ dom card)
42 cardnueq0 9653 . . . . . . . . . . . . . . . 16 (𝑦 ∈ dom card → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
4341, 42syl 17 . . . . . . . . . . . . . . 15 (𝑦 ⊆ On → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
4438, 43syl5bb 282 . . . . . . . . . . . . . 14 (𝑦 ⊆ On → (∅ = (card‘𝑦) ↔ 𝑦 = ∅))
4544biimpa 476 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → 𝑦 = ∅)
46 rex0 4288 . . . . . . . . . . . . . . . . 17 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤
4746a1i 11 . . . . . . . . . . . . . . . 16 (𝑧 ∈ suc 𝐴 → ¬ ∃𝑤 ∈ ∅ 𝑧𝑤)
4847nrex 3196 . . . . . . . . . . . . . . 15 ¬ ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤
49 nsuceq0 6331 . . . . . . . . . . . . . . . 16 suc 𝐴 ≠ ∅
50 r19.2z 4422 . . . . . . . . . . . . . . . 16 ((suc 𝐴 ≠ ∅ ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤) → ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤)
5149, 50mpan 686 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤 → ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤)
5248, 51mto 196 . . . . . . . . . . . . . 14 ¬ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤
53 rexeq 3334 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤 ∈ ∅ 𝑧𝑤))
5453ralbidv 3120 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤))
5552, 54mtbiri 326 . . . . . . . . . . . . 13 (𝑦 = ∅ → ¬ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)
5645, 55syl 17 . . . . . . . . . . . 12 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)
5756intnand 488 . . . . . . . . . . 11 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
58 imnan 399 . . . . . . . . . . 11 (((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ¬ ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
5957, 58mpbi 229 . . . . . . . . . 10 ¬ ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
60 suceloni 7635 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → suc 𝐴 ∈ On)
61 onss 7611 . . . . . . . . . . . . . . . . 17 (suc 𝐴 ∈ On → suc 𝐴 ⊆ On)
62 sstr 3925 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ suc 𝐴 ∧ suc 𝐴 ⊆ On) → 𝑦 ⊆ On)
6361, 62sylan2 592 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ suc 𝐴 ∧ suc 𝐴 ∈ On) → 𝑦 ⊆ On)
6460, 63sylan2 592 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ suc 𝐴𝐴 ∈ On) → 𝑦 ⊆ On)
6564ancoms 458 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ⊆ suc 𝐴) → 𝑦 ⊆ On)
6665adantrr 713 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑦 ⊆ On)
67663adant2 1129 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑦 ⊆ On)
68 simp2 1135 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ∅ = (card‘𝑦))
69 simp3 1136 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
7067, 68, 69jca31 514 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
71703expib 1120 . . . . . . . . . 10 (𝐴 ∈ On → ((∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7259, 71mtoi 198 . . . . . . . . 9 (𝐴 ∈ On → ¬ (∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
7372nexdv 1940 . . . . . . . 8 (𝐴 ∈ On → ¬ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
74 0ex 5226 . . . . . . . . 9 ∅ ∈ V
75 eqeq1 2742 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥 = (card‘𝑦) ↔ ∅ = (card‘𝑦)))
7675anbi1d 629 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7776exbidv 1925 . . . . . . . . 9 (𝑥 = ∅ → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7874, 77elab 3602 . . . . . . . 8 (∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
7973, 78sylnibr 328 . . . . . . 7 (𝐴 ∈ On → ¬ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8079adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝑣 = ∅) → ¬ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
81 eleq1 2826 . . . . . . 7 (𝑣 = ∅ → (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
8281adantl 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝑣 = ∅) → (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
8380, 82mtbird 324 . . . . 5 ((𝐴 ∈ On ∧ 𝑣 = ∅) → ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8437, 83sylan2b 593 . . . 4 ((𝐴 ∈ On ∧ 𝑣 ∈ 1o) → ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8584ralrimiva 3107 . . 3 (𝐴 ∈ On → ∀𝑣 ∈ 1o ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
86 cardon 9633 . . . . . . . 8 (card‘𝑦) ∈ On
87 eleq1 2826 . . . . . . . 8 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
8886, 87mpbiri 257 . . . . . . 7 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
8988adantr 480 . . . . . 6 ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑥 ∈ On)
9089exlimiv 1934 . . . . 5 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑥 ∈ On)
9190abssi 3999 . . . 4 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ⊆ On
92 oneqmini 6302 . . . 4 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ⊆ On → ((1o ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ∧ ∀𝑣 ∈ 1o ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}) → 1o = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
9391, 92ax-mp 5 . . 3 ((1o ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ∧ ∀𝑣 ∈ 1o ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}) → 1o = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
9436, 85, 93syl2anc 583 . 2 (𝐴 ∈ On → 1o = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
953, 94eqtr4d 2781 1 (𝐴 ∈ On → (cf‘suc 𝐴) = 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cun 3881  wss 3883  c0 4253  {csn 4558   cint 4876  dom cdm 5580  Oncon0 6251  suc csuc 6253  cfv 6418  1oc1o 8260  cardccrd 9624  cfccf 9626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-cf 9630
This theorem is referenced by:  cflim2  9950  cfpwsdom  10271  rankcf  10464
  Copyright terms: Public domain W3C validator