MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsuc Structured version   Visualization version   GIF version

Theorem cfsuc 10106
Description: Value of the cofinality function at a successor ordinal. Exercise 3 of [TakeutiZaring] p. 102. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 12-Feb-2013.)
Assertion
Ref Expression
cfsuc (𝐴 ∈ On → (cf‘suc 𝐴) = 1o)

Proof of Theorem cfsuc
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sucelon 7722 . . 3 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
2 cfval 10096 . . 3 (suc 𝐴 ∈ On → (cf‘suc 𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
31, 2sylbi 216 . 2 (𝐴 ∈ On → (cf‘suc 𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
4 cardsn 9818 . . . . . 6 (𝐴 ∈ On → (card‘{𝐴}) = 1o)
54eqcomd 2742 . . . . 5 (𝐴 ∈ On → 1o = (card‘{𝐴}))
6 snidg 4606 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ∈ {𝐴})
7 elsuci 6362 . . . . . . . . 9 (𝑧 ∈ suc 𝐴 → (𝑧𝐴𝑧 = 𝐴))
8 onelss 6338 . . . . . . . . . 10 (𝐴 ∈ On → (𝑧𝐴𝑧𝐴))
9 eqimss 3987 . . . . . . . . . . 11 (𝑧 = 𝐴𝑧𝐴)
109a1i 11 . . . . . . . . . 10 (𝐴 ∈ On → (𝑧 = 𝐴𝑧𝐴))
118, 10jaod 856 . . . . . . . . 9 (𝐴 ∈ On → ((𝑧𝐴𝑧 = 𝐴) → 𝑧𝐴))
127, 11syl5 34 . . . . . . . 8 (𝐴 ∈ On → (𝑧 ∈ suc 𝐴𝑧𝐴))
13 sseq2 3957 . . . . . . . . 9 (𝑤 = 𝐴 → (𝑧𝑤𝑧𝐴))
1413rspcev 3570 . . . . . . . 8 ((𝐴 ∈ {𝐴} ∧ 𝑧𝐴) → ∃𝑤 ∈ {𝐴}𝑧𝑤)
156, 12, 14syl6an 681 . . . . . . 7 (𝐴 ∈ On → (𝑧 ∈ suc 𝐴 → ∃𝑤 ∈ {𝐴}𝑧𝑤))
1615ralrimiv 3138 . . . . . 6 (𝐴 ∈ On → ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)
17 ssun2 4119 . . . . . . 7 {𝐴} ⊆ (𝐴 ∪ {𝐴})
18 df-suc 6302 . . . . . . 7 suc 𝐴 = (𝐴 ∪ {𝐴})
1917, 18sseqtrri 3968 . . . . . 6 {𝐴} ⊆ suc 𝐴
2016, 19jctil 520 . . . . 5 (𝐴 ∈ On → ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))
21 snex 5373 . . . . . 6 {𝐴} ∈ V
22 fveq2 6819 . . . . . . . 8 (𝑦 = {𝐴} → (card‘𝑦) = (card‘{𝐴}))
2322eqeq2d 2747 . . . . . . 7 (𝑦 = {𝐴} → (1o = (card‘𝑦) ↔ 1o = (card‘{𝐴})))
24 sseq1 3956 . . . . . . . 8 (𝑦 = {𝐴} → (𝑦 ⊆ suc 𝐴 ↔ {𝐴} ⊆ suc 𝐴))
25 rexeq 3306 . . . . . . . . 9 (𝑦 = {𝐴} → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤 ∈ {𝐴}𝑧𝑤))
2625ralbidv 3170 . . . . . . . 8 (𝑦 = {𝐴} → (∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))
2724, 26anbi12d 631 . . . . . . 7 (𝑦 = {𝐴} → ((𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤) ↔ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)))
2823, 27anbi12d 631 . . . . . 6 (𝑦 = {𝐴} → ((1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (1o = (card‘{𝐴}) ∧ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))))
2921, 28spcev 3554 . . . . 5 ((1o = (card‘{𝐴}) ∧ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)) → ∃𝑦(1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
305, 20, 29syl2anc 584 . . . 4 (𝐴 ∈ On → ∃𝑦(1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
31 1oex 8369 . . . . 5 1o ∈ V
32 eqeq1 2740 . . . . . . 7 (𝑥 = 1o → (𝑥 = (card‘𝑦) ↔ 1o = (card‘𝑦)))
3332anbi1d 630 . . . . . 6 (𝑥 = 1o → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
3433exbidv 1923 . . . . 5 (𝑥 = 1o → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
3531, 34elab 3619 . . . 4 (1o ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(1o = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
3630, 35sylibr 233 . . 3 (𝐴 ∈ On → 1o ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
37 el1o 8388 . . . . 5 (𝑣 ∈ 1o𝑣 = ∅)
38 eqcom 2743 . . . . . . . . . . . . . . 15 (∅ = (card‘𝑦) ↔ (card‘𝑦) = ∅)
39 vex 3445 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
40 onssnum 9889 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom card)
4139, 40mpan 687 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ On → 𝑦 ∈ dom card)
42 cardnueq0 9813 . . . . . . . . . . . . . . . 16 (𝑦 ∈ dom card → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
4341, 42syl 17 . . . . . . . . . . . . . . 15 (𝑦 ⊆ On → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
4438, 43bitrid 282 . . . . . . . . . . . . . 14 (𝑦 ⊆ On → (∅ = (card‘𝑦) ↔ 𝑦 = ∅))
4544biimpa 477 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → 𝑦 = ∅)
46 rex0 4303 . . . . . . . . . . . . . . . . 17 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤
4746a1i 11 . . . . . . . . . . . . . . . 16 (𝑧 ∈ suc 𝐴 → ¬ ∃𝑤 ∈ ∅ 𝑧𝑤)
4847nrex 3074 . . . . . . . . . . . . . . 15 ¬ ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤
49 nsuceq0 6378 . . . . . . . . . . . . . . . 16 suc 𝐴 ≠ ∅
50 r19.2z 4438 . . . . . . . . . . . . . . . 16 ((suc 𝐴 ≠ ∅ ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤) → ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤)
5149, 50mpan 687 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤 → ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤)
5248, 51mto 196 . . . . . . . . . . . . . 14 ¬ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤
53 rexeq 3306 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤 ∈ ∅ 𝑧𝑤))
5453ralbidv 3170 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤))
5552, 54mtbiri 326 . . . . . . . . . . . . 13 (𝑦 = ∅ → ¬ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)
5645, 55syl 17 . . . . . . . . . . . 12 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)
5756intnand 489 . . . . . . . . . . 11 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
58 imnan 400 . . . . . . . . . . 11 (((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ¬ ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
5957, 58mpbi 229 . . . . . . . . . 10 ¬ ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
60 suceloni 7716 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → suc 𝐴 ∈ On)
61 onss 7689 . . . . . . . . . . . . . . . . 17 (suc 𝐴 ∈ On → suc 𝐴 ⊆ On)
62 sstr 3939 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ suc 𝐴 ∧ suc 𝐴 ⊆ On) → 𝑦 ⊆ On)
6361, 62sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ suc 𝐴 ∧ suc 𝐴 ∈ On) → 𝑦 ⊆ On)
6460, 63sylan2 593 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ suc 𝐴𝐴 ∈ On) → 𝑦 ⊆ On)
6564ancoms 459 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ⊆ suc 𝐴) → 𝑦 ⊆ On)
6665adantrr 714 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑦 ⊆ On)
67663adant2 1130 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑦 ⊆ On)
68 simp2 1136 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ∅ = (card‘𝑦))
69 simp3 1137 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
7067, 68, 69jca31 515 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
71703expib 1121 . . . . . . . . . 10 (𝐴 ∈ On → ((∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7259, 71mtoi 198 . . . . . . . . 9 (𝐴 ∈ On → ¬ (∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
7372nexdv 1938 . . . . . . . 8 (𝐴 ∈ On → ¬ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
74 0ex 5248 . . . . . . . . 9 ∅ ∈ V
75 eqeq1 2740 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥 = (card‘𝑦) ↔ ∅ = (card‘𝑦)))
7675anbi1d 630 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7776exbidv 1923 . . . . . . . . 9 (𝑥 = ∅ → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7874, 77elab 3619 . . . . . . . 8 (∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
7973, 78sylnibr 328 . . . . . . 7 (𝐴 ∈ On → ¬ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8079adantr 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝑣 = ∅) → ¬ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
81 eleq1 2824 . . . . . . 7 (𝑣 = ∅ → (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
8281adantl 482 . . . . . 6 ((𝐴 ∈ On ∧ 𝑣 = ∅) → (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
8380, 82mtbird 324 . . . . 5 ((𝐴 ∈ On ∧ 𝑣 = ∅) → ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8437, 83sylan2b 594 . . . 4 ((𝐴 ∈ On ∧ 𝑣 ∈ 1o) → ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8584ralrimiva 3139 . . 3 (𝐴 ∈ On → ∀𝑣 ∈ 1o ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
86 cardon 9793 . . . . . . . 8 (card‘𝑦) ∈ On
87 eleq1 2824 . . . . . . . 8 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
8886, 87mpbiri 257 . . . . . . 7 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
8988adantr 481 . . . . . 6 ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑥 ∈ On)
9089exlimiv 1932 . . . . 5 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑥 ∈ On)
9190abssi 4014 . . . 4 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ⊆ On
92 oneqmini 6347 . . . 4 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ⊆ On → ((1o ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ∧ ∀𝑣 ∈ 1o ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}) → 1o = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
9391, 92ax-mp 5 . . 3 ((1o ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ∧ ∀𝑣 ∈ 1o ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}) → 1o = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
9436, 85, 93syl2anc 584 . 2 (𝐴 ∈ On → 1o = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
953, 94eqtr4d 2779 1 (𝐴 ∈ On → (cf‘suc 𝐴) = 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1540  wex 1780  wcel 2105  {cab 2713  wne 2940  wral 3061  wrex 3070  Vcvv 3441  cun 3895  wss 3897  c0 4268  {csn 4572   cint 4893  dom cdm 5614  Oncon0 6296  suc csuc 6298  cfv 6473  1oc1o 8352  cardccrd 9784  cfccf 9786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-om 7773  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-1o 8359  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-card 9788  df-cf 9790
This theorem is referenced by:  cflim2  10112  cfpwsdom  10433  rankcf  10626
  Copyright terms: Public domain W3C validator