Step | Hyp | Ref
| Expression |
1 | | volf 24691 |
. 2
⊢ vol:dom
vol⟶(0[,]+∞) |
2 | | fvssunirn 6805 |
. . . . . 6
⊢
(sigAlgebra‘ℝ) ⊆ ∪ ran
sigAlgebra |
3 | | dmvlsiga 32094 |
. . . . . 6
⊢ dom vol
∈ (sigAlgebra‘ℝ) |
4 | 2, 3 | sselii 3919 |
. . . . 5
⊢ dom vol
∈ ∪ ran sigAlgebra |
5 | | 0elsiga 32079 |
. . . . 5
⊢ (dom vol
∈ ∪ ran sigAlgebra → ∅ ∈ dom
vol) |
6 | 4, 5 | ax-mp 5 |
. . . 4
⊢ ∅
∈ dom vol |
7 | | mblvol 24692 |
. . . 4
⊢ (∅
∈ dom vol → (vol‘∅) =
(vol*‘∅)) |
8 | 6, 7 | ax-mp 5 |
. . 3
⊢
(vol‘∅) = (vol*‘∅) |
9 | | ovol0 24655 |
. . 3
⊢
(vol*‘∅) = 0 |
10 | 8, 9 | eqtri 2766 |
. 2
⊢
(vol‘∅) = 0 |
11 | | simpr 485 |
. . . . . 6
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → 𝑥 ∈ Fin) |
12 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ 𝒫 dom
vol |
13 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑦 𝑥 ≼
ω |
14 | | nfdisj1 5055 |
. . . . . . . . . 10
⊢
Ⅎ𝑦Disj
𝑦 ∈ 𝑥 𝑦 |
15 | 13, 14 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑦(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) |
16 | 12, 15 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) |
17 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑥 ∈ Fin |
18 | 16, 17 | nfan 1902 |
. . . . . . 7
⊢
Ⅎ𝑦((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑥 ∈ Fin) |
19 | | elpwi 4544 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝒫 dom vol →
𝑥 ⊆ dom
vol) |
20 | 19 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑥 ∈ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑥 ⊆ dom vol) |
21 | | simpr 485 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑥 ∈ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) |
22 | 20, 21 | sseldd 3923 |
. . . . . . . 8
⊢ ((((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑥 ∈ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ dom vol) |
23 | 22 | ex 413 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → (𝑦 ∈ 𝑥 → 𝑦 ∈ dom vol)) |
24 | 18, 23 | ralrimi 3141 |
. . . . . 6
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → ∀𝑦 ∈ 𝑥 𝑦 ∈ dom vol) |
25 | | simplrr 775 |
. . . . . 6
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → Disj 𝑦 ∈ 𝑥 𝑦) |
26 | | uniiun 4990 |
. . . . . . . 8
⊢ ∪ 𝑥 =
∪ 𝑦 ∈ 𝑥 𝑦 |
27 | 26 | fveq2i 6779 |
. . . . . . 7
⊢
(vol‘∪ 𝑥) = (vol‘∪ 𝑦 ∈ 𝑥 𝑦) |
28 | | volfiniune 32195 |
. . . . . . 7
⊢ ((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ dom vol ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (vol‘∪ 𝑦 ∈ 𝑥 𝑦) = Σ*𝑦 ∈ 𝑥(vol‘𝑦)) |
29 | 27, 28 | eqtrid 2790 |
. . . . . 6
⊢ ((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ dom vol ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (vol‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(vol‘𝑦)) |
30 | 11, 24, 25, 29 | syl3anc 1370 |
. . . . 5
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → (vol‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(vol‘𝑦)) |
31 | | bren 8741 |
. . . . . 6
⊢ (ℕ
≈ 𝑥 ↔
∃𝑓 𝑓:ℕ–1-1-onto→𝑥) |
32 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝑥 ∈ 𝒫 dom vol ∧
𝑓:ℕ–1-1-onto→𝑥) |
33 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(vol‘𝑦) |
34 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(vol‘(𝑓‘𝑛)) |
35 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛𝑥 |
36 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛ℕ |
37 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛𝑓 |
38 | | fveq2 6776 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑓‘𝑛) → (vol‘𝑦) = (vol‘(𝑓‘𝑛))) |
39 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝒫 dom vol ∧
𝑓:ℕ–1-1-onto→𝑥) → 𝑥 ∈ 𝒫 dom vol) |
40 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝒫 dom vol ∧
𝑓:ℕ–1-1-onto→𝑥) → 𝑓:ℕ–1-1-onto→𝑥) |
41 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
𝑓:ℕ–1-1-onto→𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓‘𝑛) = (𝑓‘𝑛)) |
42 | 1 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
𝑓:ℕ–1-1-onto→𝑥) ∧ 𝑦 ∈ 𝑥) → vol:dom
vol⟶(0[,]+∞)) |
43 | 39, 19 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝒫 dom vol ∧
𝑓:ℕ–1-1-onto→𝑥) → 𝑥 ⊆ dom vol) |
44 | 43 | sselda 3922 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
𝑓:ℕ–1-1-onto→𝑥) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ dom vol) |
45 | 42, 44 | ffvelrnd 6964 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
𝑓:ℕ–1-1-onto→𝑥) ∧ 𝑦 ∈ 𝑥) → (vol‘𝑦) ∈ (0[,]+∞)) |
46 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45 | esumf1o 32015 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 dom vol ∧
𝑓:ℕ–1-1-onto→𝑥) → Σ*𝑦 ∈ 𝑥(vol‘𝑦) = Σ*𝑛 ∈ ℕ(vol‘(𝑓‘𝑛))) |
47 | 46 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto→𝑥) →
Σ*𝑦 ∈
𝑥(vol‘𝑦) = Σ*𝑛 ∈ ℕ(vol‘(𝑓‘𝑛))) |
48 | 19 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto→𝑥) ∧ 𝑛 ∈ ℕ) → 𝑥 ⊆ dom vol) |
49 | | f1of 6718 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℕ–1-1-onto→𝑥 → 𝑓:ℕ⟶𝑥) |
50 | 49 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto→𝑥) → 𝑓:ℕ⟶𝑥) |
51 | 50 | ffvelrnda 6963 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto→𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓‘𝑛) ∈ 𝑥) |
52 | 48, 51 | sseldd 3923 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto→𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓‘𝑛) ∈ dom vol) |
53 | 52 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto→𝑥) → ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ dom vol) |
54 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto→𝑥) → 𝑓:ℕ–1-1-onto→𝑥) |
55 | | simplrr 775 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto→𝑥) → Disj 𝑦 ∈ 𝑥 𝑦) |
56 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–1-1-onto→𝑥 → 𝑓:ℕ–1-1-onto→𝑥) |
57 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:ℕ–1-1-onto→𝑥 ∧ 𝑦 = (𝑓‘𝑛)) → 𝑦 = (𝑓‘𝑛)) |
58 | 56, 57 | disjrdx 30927 |
. . . . . . . . . . . . 13
⊢ (𝑓:ℕ–1-1-onto→𝑥 → (Disj 𝑛 ∈ ℕ (𝑓‘𝑛) ↔ Disj 𝑦 ∈ 𝑥 𝑦)) |
59 | 58 | biimpar 478 |
. . . . . . . . . . . 12
⊢ ((𝑓:ℕ–1-1-onto→𝑥 ∧ Disj 𝑦 ∈ 𝑥 𝑦) → Disj 𝑛 ∈ ℕ (𝑓‘𝑛)) |
60 | 54, 55, 59 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto→𝑥) → Disj 𝑛 ∈ ℕ (𝑓‘𝑛)) |
61 | | voliune 32194 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
ℕ (𝑓‘𝑛) ∈ dom vol ∧
Disj 𝑛 ∈
ℕ (𝑓‘𝑛)) → (vol‘∪ 𝑛 ∈ ℕ (𝑓‘𝑛)) = Σ*𝑛 ∈ ℕ(vol‘(𝑓‘𝑛))) |
62 | 53, 60, 61 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto→𝑥) → (vol‘∪ 𝑛 ∈ ℕ (𝑓‘𝑛)) = Σ*𝑛 ∈ ℕ(vol‘(𝑓‘𝑛))) |
63 | | f1ofo 6725 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–1-1-onto→𝑥 → 𝑓:ℕ–onto→𝑥) |
64 | 63, 57 | iunrdx 30900 |
. . . . . . . . . . . . 13
⊢ (𝑓:ℕ–1-1-onto→𝑥 → ∪ 𝑛 ∈ ℕ (𝑓‘𝑛) = ∪ 𝑦 ∈ 𝑥 𝑦) |
65 | 64, 26 | eqtr4di 2796 |
. . . . . . . . . . . 12
⊢ (𝑓:ℕ–1-1-onto→𝑥 → ∪ 𝑛 ∈ ℕ (𝑓‘𝑛) = ∪ 𝑥) |
66 | 65 | fveq2d 6780 |
. . . . . . . . . . 11
⊢ (𝑓:ℕ–1-1-onto→𝑥 → (vol‘∪ 𝑛 ∈ ℕ (𝑓‘𝑛)) = (vol‘∪
𝑥)) |
67 | 66 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto→𝑥) → (vol‘∪ 𝑛 ∈ ℕ (𝑓‘𝑛)) = (vol‘∪
𝑥)) |
68 | 47, 62, 67 | 3eqtr2rd 2785 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto→𝑥) → (vol‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(vol‘𝑦)) |
69 | 68 | ex 413 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑓:ℕ–1-1-onto→𝑥 → (vol‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(vol‘𝑦))) |
70 | 69 | exlimdv 1936 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) → (∃𝑓 𝑓:ℕ–1-1-onto→𝑥 → (vol‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(vol‘𝑦))) |
71 | 70 | imp 407 |
. . . . . 6
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ ∃𝑓 𝑓:ℕ–1-1-onto→𝑥) → (vol‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(vol‘𝑦)) |
72 | 31, 71 | sylan2b 594 |
. . . . 5
⊢ (((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) ∧ ℕ ≈ 𝑥) → (vol‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(vol‘𝑦)) |
73 | | brdom2 8768 |
. . . . . . . 8
⊢ (𝑥 ≼ ω ↔ (𝑥 ≺ ω ∨ 𝑥 ≈
ω)) |
74 | 73 | biimpi 215 |
. . . . . . 7
⊢ (𝑥 ≼ ω → (𝑥 ≺ ω ∨ 𝑥 ≈
ω)) |
75 | | isfinite2 9070 |
. . . . . . . 8
⊢ (𝑥 ≺ ω → 𝑥 ∈ Fin) |
76 | | ensymb 8786 |
. . . . . . . . 9
⊢ (𝑥 ≈ ω ↔ ω
≈ 𝑥) |
77 | | nnenom 13698 |
. . . . . . . . . 10
⊢ ℕ
≈ ω |
78 | | entr 8790 |
. . . . . . . . . 10
⊢ ((ℕ
≈ ω ∧ ω ≈ 𝑥) → ℕ ≈ 𝑥) |
79 | 77, 78 | mpan 687 |
. . . . . . . . 9
⊢ (ω
≈ 𝑥 → ℕ
≈ 𝑥) |
80 | 76, 79 | sylbi 216 |
. . . . . . . 8
⊢ (𝑥 ≈ ω → ℕ
≈ 𝑥) |
81 | 75, 80 | orim12i 906 |
. . . . . . 7
⊢ ((𝑥 ≺ ω ∨ 𝑥 ≈ ω) → (𝑥 ∈ Fin ∨ ℕ ≈
𝑥)) |
82 | 74, 81 | syl 17 |
. . . . . 6
⊢ (𝑥 ≼ ω → (𝑥 ∈ Fin ∨ ℕ ≈
𝑥)) |
83 | 82 | ad2antrl 725 |
. . . . 5
⊢ ((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑥 ∈ Fin ∨ ℕ ≈ 𝑥)) |
84 | 30, 72, 83 | mpjaodan 956 |
. . . 4
⊢ ((𝑥 ∈ 𝒫 dom vol ∧
(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦)) → (vol‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(vol‘𝑦)) |
85 | 84 | ex 413 |
. . 3
⊢ (𝑥 ∈ 𝒫 dom vol →
((𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) → (vol‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(vol‘𝑦))) |
86 | 85 | rgen 3074 |
. 2
⊢
∀𝑥 ∈
𝒫 dom vol((𝑥
≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (vol‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(vol‘𝑦)) |
87 | | ismeas 32164 |
. . 3
⊢ (dom vol
∈ ∪ ran sigAlgebra → (vol ∈
(measures‘dom vol) ↔ (vol:dom vol⟶(0[,]+∞) ∧
(vol‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom vol((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (vol‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(vol‘𝑦))))) |
88 | 4, 87 | ax-mp 5 |
. 2
⊢ (vol
∈ (measures‘dom vol) ↔ (vol:dom vol⟶(0[,]+∞) ∧
(vol‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom vol((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (vol‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(vol‘𝑦)))) |
89 | 1, 10, 86, 88 | mpbir3an 1340 |
1
⊢ vol
∈ (measures‘dom vol) |