Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volmeas Structured version   Visualization version   GIF version

Theorem volmeas 31490
Description: The Lebesgue measure is a measure. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
volmeas vol ∈ (measures‘dom vol)

Proof of Theorem volmeas
Dummy variables 𝑓 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 volf 24130 . 2 vol:dom vol⟶(0[,]+∞)
2 fvssunirn 6699 . . . . . 6 (sigAlgebra‘ℝ) ⊆ ran sigAlgebra
3 dmvlsiga 31388 . . . . . 6 dom vol ∈ (sigAlgebra‘ℝ)
42, 3sselii 3964 . . . . 5 dom vol ∈ ran sigAlgebra
5 0elsiga 31373 . . . . 5 (dom vol ∈ ran sigAlgebra → ∅ ∈ dom vol)
64, 5ax-mp 5 . . . 4 ∅ ∈ dom vol
7 mblvol 24131 . . . 4 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
86, 7ax-mp 5 . . 3 (vol‘∅) = (vol*‘∅)
9 ovol0 24094 . . 3 (vol*‘∅) = 0
108, 9eqtri 2844 . 2 (vol‘∅) = 0
11 simpr 487 . . . . . 6 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → 𝑥 ∈ Fin)
12 nfv 1915 . . . . . . . . 9 𝑦 𝑥 ∈ 𝒫 dom vol
13 nfv 1915 . . . . . . . . . 10 𝑦 𝑥 ≼ ω
14 nfdisj1 5045 . . . . . . . . . 10 𝑦Disj 𝑦𝑥 𝑦
1513, 14nfan 1900 . . . . . . . . 9 𝑦(𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)
1612, 15nfan 1900 . . . . . . . 8 𝑦(𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
17 nfv 1915 . . . . . . . 8 𝑦 𝑥 ∈ Fin
1816, 17nfan 1900 . . . . . . 7 𝑦((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin)
19 elpwi 4548 . . . . . . . . . 10 (𝑥 ∈ 𝒫 dom vol → 𝑥 ⊆ dom vol)
2019ad3antrrr 728 . . . . . . . . 9 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) ∧ 𝑦𝑥) → 𝑥 ⊆ dom vol)
21 simpr 487 . . . . . . . . 9 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
2220, 21sseldd 3968 . . . . . . . 8 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ dom vol)
2322ex 415 . . . . . . 7 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → (𝑦𝑥𝑦 ∈ dom vol))
2418, 23ralrimi 3216 . . . . . 6 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → ∀𝑦𝑥 𝑦 ∈ dom vol)
25 simplrr 776 . . . . . 6 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → Disj 𝑦𝑥 𝑦)
26 uniiun 4982 . . . . . . . 8 𝑥 = 𝑦𝑥 𝑦
2726fveq2i 6673 . . . . . . 7 (vol‘ 𝑥) = (vol‘ 𝑦𝑥 𝑦)
28 volfiniune 31489 . . . . . . 7 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 ∈ dom vol ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑦𝑥 𝑦) = Σ*𝑦𝑥(vol‘𝑦))
2927, 28syl5eq 2868 . . . . . 6 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 ∈ dom vol ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
3011, 24, 25, 29syl3anc 1367 . . . . 5 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
31 bren 8518 . . . . . 6 (ℕ ≈ 𝑥 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝑥)
32 nfv 1915 . . . . . . . . . . . 12 𝑛(𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥)
33 nfcv 2977 . . . . . . . . . . . 12 𝑛(vol‘𝑦)
34 nfcv 2977 . . . . . . . . . . . 12 𝑦(vol‘(𝑓𝑛))
35 nfcv 2977 . . . . . . . . . . . 12 𝑛𝑥
36 nfcv 2977 . . . . . . . . . . . 12 𝑛
37 nfcv 2977 . . . . . . . . . . . 12 𝑛𝑓
38 fveq2 6670 . . . . . . . . . . . 12 (𝑦 = (𝑓𝑛) → (vol‘𝑦) = (vol‘(𝑓𝑛)))
39 simpl 485 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑥 ∈ 𝒫 dom vol)
40 simpr 487 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑓:ℕ–1-1-onto𝑥)
41 eqidd 2822 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) = (𝑓𝑛))
421a1i 11 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑦𝑥) → vol:dom vol⟶(0[,]+∞))
4339, 19syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑥 ⊆ dom vol)
4443sselda 3967 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑦𝑥) → 𝑦 ∈ dom vol)
4542, 44ffvelrnd 6852 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑦𝑥) → (vol‘𝑦) ∈ (0[,]+∞))
4632, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45esumf1o 31309 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) → Σ*𝑦𝑥(vol‘𝑦) = Σ*𝑛 ∈ ℕ(vol‘(𝑓𝑛)))
4746adantlr 713 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → Σ*𝑦𝑥(vol‘𝑦) = Σ*𝑛 ∈ ℕ(vol‘(𝑓𝑛)))
4819ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑛 ∈ ℕ) → 𝑥 ⊆ dom vol)
49 f1of 6615 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto𝑥𝑓:ℕ⟶𝑥)
5049adantl 484 . . . . . . . . . . . . . 14 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑓:ℕ⟶𝑥)
5150ffvelrnda 6851 . . . . . . . . . . . . 13 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ 𝑥)
5248, 51sseldd 3968 . . . . . . . . . . . 12 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ dom vol)
5352ralrimiva 3182 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ dom vol)
54 simpr 487 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑓:ℕ–1-1-onto𝑥)
55 simplrr 776 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → Disj 𝑦𝑥 𝑦)
56 id 22 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto𝑥𝑓:ℕ–1-1-onto𝑥)
57 simpr 487 . . . . . . . . . . . . . 14 ((𝑓:ℕ–1-1-onto𝑥𝑦 = (𝑓𝑛)) → 𝑦 = (𝑓𝑛))
5856, 57disjrdx 30341 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto𝑥 → (Disj 𝑛 ∈ ℕ (𝑓𝑛) ↔ Disj 𝑦𝑥 𝑦))
5958biimpar 480 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto𝑥Disj 𝑦𝑥 𝑦) → Disj 𝑛 ∈ ℕ (𝑓𝑛))
6054, 55, 59syl2anc 586 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → Disj 𝑛 ∈ ℕ (𝑓𝑛))
61 voliune 31488 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑓𝑛) ∈ dom vol ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = Σ*𝑛 ∈ ℕ(vol‘(𝑓𝑛)))
6253, 60, 61syl2anc 586 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = Σ*𝑛 ∈ ℕ(vol‘(𝑓𝑛)))
63 f1ofo 6622 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto𝑥𝑓:ℕ–onto𝑥)
6463, 57iunrdx 30315 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = 𝑦𝑥 𝑦)
6564, 26syl6eqr 2874 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = 𝑥)
6665fveq2d 6674 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto𝑥 → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = (vol‘ 𝑥))
6766adantl 484 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = (vol‘ 𝑥))
6847, 62, 673eqtr2rd 2863 . . . . . . . . 9 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
6968ex 415 . . . . . . . 8 ((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑓:ℕ–1-1-onto𝑥 → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦)))
7069exlimdv 1934 . . . . . . 7 ((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (∃𝑓 𝑓:ℕ–1-1-onto𝑥 → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦)))
7170imp 409 . . . . . 6 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ∃𝑓 𝑓:ℕ–1-1-onto𝑥) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
7231, 71sylan2b 595 . . . . 5 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ℕ ≈ 𝑥) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
73 brdom2 8539 . . . . . . . 8 (𝑥 ≼ ω ↔ (𝑥 ≺ ω ∨ 𝑥 ≈ ω))
7473biimpi 218 . . . . . . 7 (𝑥 ≼ ω → (𝑥 ≺ ω ∨ 𝑥 ≈ ω))
75 isfinite2 8776 . . . . . . . 8 (𝑥 ≺ ω → 𝑥 ∈ Fin)
76 ensymb 8557 . . . . . . . . 9 (𝑥 ≈ ω ↔ ω ≈ 𝑥)
77 nnenom 13349 . . . . . . . . . 10 ℕ ≈ ω
78 entr 8561 . . . . . . . . . 10 ((ℕ ≈ ω ∧ ω ≈ 𝑥) → ℕ ≈ 𝑥)
7977, 78mpan 688 . . . . . . . . 9 (ω ≈ 𝑥 → ℕ ≈ 𝑥)
8076, 79sylbi 219 . . . . . . . 8 (𝑥 ≈ ω → ℕ ≈ 𝑥)
8175, 80orim12i 905 . . . . . . 7 ((𝑥 ≺ ω ∨ 𝑥 ≈ ω) → (𝑥 ∈ Fin ∨ ℕ ≈ 𝑥))
8274, 81syl 17 . . . . . 6 (𝑥 ≼ ω → (𝑥 ∈ Fin ∨ ℕ ≈ 𝑥))
8382ad2antrl 726 . . . . 5 ((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑥 ∈ Fin ∨ ℕ ≈ 𝑥))
8430, 72, 83mpjaodan 955 . . . 4 ((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
8584ex 415 . . 3 (𝑥 ∈ 𝒫 dom vol → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦)))
8685rgen 3148 . 2 𝑥 ∈ 𝒫 dom vol((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
87 ismeas 31458 . . 3 (dom vol ∈ ran sigAlgebra → (vol ∈ (measures‘dom vol) ↔ (vol:dom vol⟶(0[,]+∞) ∧ (vol‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom vol((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦)))))
884, 87ax-mp 5 . 2 (vol ∈ (measures‘dom vol) ↔ (vol:dom vol⟶(0[,]+∞) ∧ (vol‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom vol((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))))
891, 10, 86, 88mpbir3an 1337 1 vol ∈ (measures‘dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3138  wss 3936  c0 4291  𝒫 cpw 4539   cuni 4838   ciun 4919  Disj wdisj 5031   class class class wbr 5066  dom cdm 5555  ran crn 5556  wf 6351  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  ωcom 7580  cen 8506  cdom 8507  csdm 8508  Fincfn 8509  cr 10536  0cc0 10537  +∞cpnf 10672  cn 11638  [,]cicc 12742  vol*covol 24063  volcvol 24064  Σ*cesum 31286  sigAlgebracsiga 31367  measurescmeas 31454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-ordt 16774  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-ps 17810  df-tsr 17811  df-plusf 17851  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-subrg 19533  df-abv 19588  df-lmod 19636  df-scaf 19637  df-sra 19944  df-rgmod 19945  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-tmd 22680  df-tgp 22681  df-tsms 22735  df-trg 22768  df-xms 22930  df-ms 22931  df-tms 22932  df-nm 23192  df-ngp 23193  df-nrg 23195  df-nlm 23196  df-ii 23485  df-cncf 23486  df-ovol 24065  df-vol 24066  df-limc 24464  df-dv 24465  df-log 25140  df-esum 31287  df-siga 31368  df-meas 31455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator