Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volmeas Structured version   Visualization version   GIF version

Theorem volmeas 34211
Description: The Lebesgue measure is a measure. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
volmeas vol ∈ (measures‘dom vol)

Proof of Theorem volmeas
Dummy variables 𝑓 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 volf 25577 . 2 vol:dom vol⟶(0[,]+∞)
2 fvssunirn 6939 . . . . . 6 (sigAlgebra‘ℝ) ⊆ ran sigAlgebra
3 dmvlsiga 34109 . . . . . 6 dom vol ∈ (sigAlgebra‘ℝ)
42, 3sselii 3991 . . . . 5 dom vol ∈ ran sigAlgebra
5 0elsiga 34094 . . . . 5 (dom vol ∈ ran sigAlgebra → ∅ ∈ dom vol)
64, 5ax-mp 5 . . . 4 ∅ ∈ dom vol
7 mblvol 25578 . . . 4 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
86, 7ax-mp 5 . . 3 (vol‘∅) = (vol*‘∅)
9 ovol0 25541 . . 3 (vol*‘∅) = 0
108, 9eqtri 2762 . 2 (vol‘∅) = 0
11 simpr 484 . . . . . 6 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → 𝑥 ∈ Fin)
12 nfv 1911 . . . . . . . . 9 𝑦 𝑥 ∈ 𝒫 dom vol
13 nfv 1911 . . . . . . . . . 10 𝑦 𝑥 ≼ ω
14 nfdisj1 5128 . . . . . . . . . 10 𝑦Disj 𝑦𝑥 𝑦
1513, 14nfan 1896 . . . . . . . . 9 𝑦(𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)
1612, 15nfan 1896 . . . . . . . 8 𝑦(𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
17 nfv 1911 . . . . . . . 8 𝑦 𝑥 ∈ Fin
1816, 17nfan 1896 . . . . . . 7 𝑦((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin)
19 elpwi 4611 . . . . . . . . . 10 (𝑥 ∈ 𝒫 dom vol → 𝑥 ⊆ dom vol)
2019ad3antrrr 730 . . . . . . . . 9 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) ∧ 𝑦𝑥) → 𝑥 ⊆ dom vol)
21 simpr 484 . . . . . . . . 9 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
2220, 21sseldd 3995 . . . . . . . 8 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ dom vol)
2322ex 412 . . . . . . 7 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → (𝑦𝑥𝑦 ∈ dom vol))
2418, 23ralrimi 3254 . . . . . 6 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → ∀𝑦𝑥 𝑦 ∈ dom vol)
25 simplrr 778 . . . . . 6 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → Disj 𝑦𝑥 𝑦)
26 uniiun 5062 . . . . . . . 8 𝑥 = 𝑦𝑥 𝑦
2726fveq2i 6909 . . . . . . 7 (vol‘ 𝑥) = (vol‘ 𝑦𝑥 𝑦)
28 volfiniune 34210 . . . . . . 7 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 ∈ dom vol ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑦𝑥 𝑦) = Σ*𝑦𝑥(vol‘𝑦))
2927, 28eqtrid 2786 . . . . . 6 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 ∈ dom vol ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
3011, 24, 25, 29syl3anc 1370 . . . . 5 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
31 bren 8993 . . . . . 6 (ℕ ≈ 𝑥 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝑥)
32 nfv 1911 . . . . . . . . . . . 12 𝑛(𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥)
33 nfcv 2902 . . . . . . . . . . . 12 𝑛(vol‘𝑦)
34 nfcv 2902 . . . . . . . . . . . 12 𝑦(vol‘(𝑓𝑛))
35 nfcv 2902 . . . . . . . . . . . 12 𝑛𝑥
36 nfcv 2902 . . . . . . . . . . . 12 𝑛
37 nfcv 2902 . . . . . . . . . . . 12 𝑛𝑓
38 fveq2 6906 . . . . . . . . . . . 12 (𝑦 = (𝑓𝑛) → (vol‘𝑦) = (vol‘(𝑓𝑛)))
39 simpl 482 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑥 ∈ 𝒫 dom vol)
40 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑓:ℕ–1-1-onto𝑥)
41 eqidd 2735 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) = (𝑓𝑛))
421a1i 11 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑦𝑥) → vol:dom vol⟶(0[,]+∞))
4339, 19syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑥 ⊆ dom vol)
4443sselda 3994 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑦𝑥) → 𝑦 ∈ dom vol)
4542, 44ffvelcdmd 7104 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑦𝑥) → (vol‘𝑦) ∈ (0[,]+∞))
4632, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45esumf1o 34030 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) → Σ*𝑦𝑥(vol‘𝑦) = Σ*𝑛 ∈ ℕ(vol‘(𝑓𝑛)))
4746adantlr 715 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → Σ*𝑦𝑥(vol‘𝑦) = Σ*𝑛 ∈ ℕ(vol‘(𝑓𝑛)))
4819ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑛 ∈ ℕ) → 𝑥 ⊆ dom vol)
49 f1of 6848 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto𝑥𝑓:ℕ⟶𝑥)
5049adantl 481 . . . . . . . . . . . . . 14 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑓:ℕ⟶𝑥)
5150ffvelcdmda 7103 . . . . . . . . . . . . 13 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ 𝑥)
5248, 51sseldd 3995 . . . . . . . . . . . 12 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ dom vol)
5352ralrimiva 3143 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ dom vol)
54 simpr 484 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑓:ℕ–1-1-onto𝑥)
55 simplrr 778 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → Disj 𝑦𝑥 𝑦)
56 id 22 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto𝑥𝑓:ℕ–1-1-onto𝑥)
57 simpr 484 . . . . . . . . . . . . . 14 ((𝑓:ℕ–1-1-onto𝑥𝑦 = (𝑓𝑛)) → 𝑦 = (𝑓𝑛))
5856, 57disjrdx 32610 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto𝑥 → (Disj 𝑛 ∈ ℕ (𝑓𝑛) ↔ Disj 𝑦𝑥 𝑦))
5958biimpar 477 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto𝑥Disj 𝑦𝑥 𝑦) → Disj 𝑛 ∈ ℕ (𝑓𝑛))
6054, 55, 59syl2anc 584 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → Disj 𝑛 ∈ ℕ (𝑓𝑛))
61 voliune 34209 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑓𝑛) ∈ dom vol ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = Σ*𝑛 ∈ ℕ(vol‘(𝑓𝑛)))
6253, 60, 61syl2anc 584 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = Σ*𝑛 ∈ ℕ(vol‘(𝑓𝑛)))
63 f1ofo 6855 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto𝑥𝑓:ℕ–onto𝑥)
6463, 57iunrdx 32583 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = 𝑦𝑥 𝑦)
6564, 26eqtr4di 2792 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = 𝑥)
6665fveq2d 6910 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto𝑥 → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = (vol‘ 𝑥))
6766adantl 481 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = (vol‘ 𝑥))
6847, 62, 673eqtr2rd 2781 . . . . . . . . 9 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
6968ex 412 . . . . . . . 8 ((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑓:ℕ–1-1-onto𝑥 → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦)))
7069exlimdv 1930 . . . . . . 7 ((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (∃𝑓 𝑓:ℕ–1-1-onto𝑥 → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦)))
7170imp 406 . . . . . 6 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ∃𝑓 𝑓:ℕ–1-1-onto𝑥) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
7231, 71sylan2b 594 . . . . 5 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ℕ ≈ 𝑥) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
73 brdom2 9020 . . . . . . . 8 (𝑥 ≼ ω ↔ (𝑥 ≺ ω ∨ 𝑥 ≈ ω))
7473biimpi 216 . . . . . . 7 (𝑥 ≼ ω → (𝑥 ≺ ω ∨ 𝑥 ≈ ω))
75 isfinite2 9331 . . . . . . . 8 (𝑥 ≺ ω → 𝑥 ∈ Fin)
76 ensymb 9040 . . . . . . . . 9 (𝑥 ≈ ω ↔ ω ≈ 𝑥)
77 nnenom 14017 . . . . . . . . . 10 ℕ ≈ ω
78 entr 9044 . . . . . . . . . 10 ((ℕ ≈ ω ∧ ω ≈ 𝑥) → ℕ ≈ 𝑥)
7977, 78mpan 690 . . . . . . . . 9 (ω ≈ 𝑥 → ℕ ≈ 𝑥)
8076, 79sylbi 217 . . . . . . . 8 (𝑥 ≈ ω → ℕ ≈ 𝑥)
8175, 80orim12i 908 . . . . . . 7 ((𝑥 ≺ ω ∨ 𝑥 ≈ ω) → (𝑥 ∈ Fin ∨ ℕ ≈ 𝑥))
8274, 81syl 17 . . . . . 6 (𝑥 ≼ ω → (𝑥 ∈ Fin ∨ ℕ ≈ 𝑥))
8382ad2antrl 728 . . . . 5 ((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑥 ∈ Fin ∨ ℕ ≈ 𝑥))
8430, 72, 83mpjaodan 960 . . . 4 ((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
8584ex 412 . . 3 (𝑥 ∈ 𝒫 dom vol → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦)))
8685rgen 3060 . 2 𝑥 ∈ 𝒫 dom vol((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
87 ismeas 34179 . . 3 (dom vol ∈ ran sigAlgebra → (vol ∈ (measures‘dom vol) ↔ (vol:dom vol⟶(0[,]+∞) ∧ (vol‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom vol((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦)))))
884, 87ax-mp 5 . 2 (vol ∈ (measures‘dom vol) ↔ (vol:dom vol⟶(0[,]+∞) ∧ (vol‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom vol((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))))
891, 10, 86, 88mpbir3an 1340 1 vol ∈ (measures‘dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wral 3058  wss 3962  c0 4338  𝒫 cpw 4604   cuni 4911   ciun 4995  Disj wdisj 5114   class class class wbr 5147  dom cdm 5688  ran crn 5689  wf 6558  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  ωcom 7886  cen 8980  cdom 8981  csdm 8982  Fincfn 8983  cr 11151  0cc0 11152  +∞cpnf 11289  cn 12263  [,]cicc 13386  vol*covol 25510  volcvol 25511  Σ*cesum 34007  sigAlgebracsiga 34088  measurescmeas 34175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-ordt 17547  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-ps 18623  df-tsr 18624  df-plusf 18664  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-subrng 20562  df-subrg 20586  df-abv 20826  df-lmod 20876  df-scaf 20877  df-sra 21189  df-rgmod 21190  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-tmd 24095  df-tgp 24096  df-tsms 24150  df-trg 24183  df-xms 24345  df-ms 24346  df-tms 24347  df-nm 24610  df-ngp 24611  df-nrg 24613  df-nlm 24614  df-ii 24916  df-cncf 24917  df-ovol 25512  df-vol 25513  df-limc 25915  df-dv 25916  df-log 26612  df-esum 34008  df-siga 34089  df-meas 34176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator