MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab4f Structured version   Visualization version   GIF version

Theorem dfoprab4f 7989
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 20-Dec-2008.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
dfoprab4f.x 𝑥𝜑
dfoprab4f.y 𝑦𝜑
dfoprab4f.1 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
dfoprab4f {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦   𝑤,𝐵,𝑥,𝑦   𝜓,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧)   𝐴(𝑧)   𝐵(𝑧)

Proof of Theorem dfoprab4f
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . . 5 𝑥 𝑤 = ⟨𝑡, 𝑢
2 dfoprab4f.x . . . . . 6 𝑥𝜑
3 nfs1v 2154 . . . . . 6 𝑥[𝑡 / 𝑥][𝑢 / 𝑦]𝜓
42, 3nfbi 1907 . . . . 5 𝑥(𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)
51, 4nfim 1900 . . . 4 𝑥(𝑤 = ⟨𝑡, 𝑢⟩ → (𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))
6 opeq1 4831 . . . . . 6 (𝑥 = 𝑡 → ⟨𝑥, 𝑢⟩ = ⟨𝑡, 𝑢⟩)
76eqeq2d 2748 . . . . 5 (𝑥 = 𝑡 → (𝑤 = ⟨𝑥, 𝑢⟩ ↔ 𝑤 = ⟨𝑡, 𝑢⟩))
8 sbequ12 2244 . . . . . 6 (𝑥 = 𝑡 → ([𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))
98bibi2d 343 . . . . 5 (𝑥 = 𝑡 → ((𝜑 ↔ [𝑢 / 𝑦]𝜓) ↔ (𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)))
107, 9imbi12d 345 . . . 4 (𝑥 = 𝑡 → ((𝑤 = ⟨𝑥, 𝑢⟩ → (𝜑 ↔ [𝑢 / 𝑦]𝜓)) ↔ (𝑤 = ⟨𝑡, 𝑢⟩ → (𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))))
11 nfv 1918 . . . . . 6 𝑦 𝑤 = ⟨𝑥, 𝑢
12 dfoprab4f.y . . . . . . 7 𝑦𝜑
13 nfs1v 2154 . . . . . . 7 𝑦[𝑢 / 𝑦]𝜓
1412, 13nfbi 1907 . . . . . 6 𝑦(𝜑 ↔ [𝑢 / 𝑦]𝜓)
1511, 14nfim 1900 . . . . 5 𝑦(𝑤 = ⟨𝑥, 𝑢⟩ → (𝜑 ↔ [𝑢 / 𝑦]𝜓))
16 opeq2 4832 . . . . . . 7 (𝑦 = 𝑢 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑢⟩)
1716eqeq2d 2748 . . . . . 6 (𝑦 = 𝑢 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑥, 𝑢⟩))
18 sbequ12 2244 . . . . . . 7 (𝑦 = 𝑢 → (𝜓 ↔ [𝑢 / 𝑦]𝜓))
1918bibi2d 343 . . . . . 6 (𝑦 = 𝑢 → ((𝜑𝜓) ↔ (𝜑 ↔ [𝑢 / 𝑦]𝜓)))
2017, 19imbi12d 345 . . . . 5 (𝑦 = 𝑢 → ((𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓)) ↔ (𝑤 = ⟨𝑥, 𝑢⟩ → (𝜑 ↔ [𝑢 / 𝑦]𝜓))))
21 dfoprab4f.1 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
2215, 20, 21chvarfv 2234 . . . 4 (𝑤 = ⟨𝑥, 𝑢⟩ → (𝜑 ↔ [𝑢 / 𝑦]𝜓))
235, 10, 22chvarfv 2234 . . 3 (𝑤 = ⟨𝑡, 𝑢⟩ → (𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))
2423dfoprab4 7988 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑡, 𝑢⟩, 𝑧⟩ ∣ ((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)}
25 nfv 1918 . . 3 𝑡((𝑥𝐴𝑦𝐵) ∧ 𝜓)
26 nfv 1918 . . 3 𝑢((𝑥𝐴𝑦𝐵) ∧ 𝜓)
27 nfv 1918 . . . 4 𝑥(𝑡𝐴𝑢𝐵)
2827, 3nfan 1903 . . 3 𝑥((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)
29 nfv 1918 . . . 4 𝑦(𝑡𝐴𝑢𝐵)
3013nfsbv 2324 . . . 4 𝑦[𝑡 / 𝑥][𝑢 / 𝑦]𝜓
3129, 30nfan 1903 . . 3 𝑦((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)
32 eleq1w 2821 . . . . 5 (𝑥 = 𝑡 → (𝑥𝐴𝑡𝐴))
33 eleq1w 2821 . . . . 5 (𝑦 = 𝑢 → (𝑦𝐵𝑢𝐵))
3432, 33bi2anan9 638 . . . 4 ((𝑥 = 𝑡𝑦 = 𝑢) → ((𝑥𝐴𝑦𝐵) ↔ (𝑡𝐴𝑢𝐵)))
3518, 8sylan9bbr 512 . . . 4 ((𝑥 = 𝑡𝑦 = 𝑢) → (𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))
3634, 35anbi12d 632 . . 3 ((𝑥 = 𝑡𝑦 = 𝑢) → (((𝑥𝐴𝑦𝐵) ∧ 𝜓) ↔ ((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)))
3725, 26, 28, 31, 36cbvoprab12 7447 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} = {⟨⟨𝑡, 𝑢⟩, 𝑧⟩ ∣ ((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)}
3824, 37eqtr4i 2768 1 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wnf 1786  [wsb 2068  wcel 2107  cop 4593  {copab 5168   × cxp 5632  {coprab 7359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-iota 6449  df-fun 6499  df-fv 6505  df-oprab 7362  df-1st 7922  df-2nd 7923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator