Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfxneg | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the negative of an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
nfxneg.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfxneg | ⊢ Ⅎ𝑥-𝑒𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxneg.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | 2 | nfxnegd 43325 | . 2 ⊢ (⊤ → Ⅎ𝑥-𝑒𝐴) |
4 | 3 | mptru 1547 | 1 ⊢ Ⅎ𝑥-𝑒𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1541 Ⅎwnfc 2884 -𝑒cxne 12946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-iota 6431 df-fv 6487 df-ov 7340 df-neg 11309 df-xneg 12949 |
This theorem is referenced by: liminfvalxr 43669 xlimpnfxnegmnf 43700 liminfpnfuz 43702 xlimpnfxnegmnf2 43744 |
Copyright terms: Public domain | W3C validator |