Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfxneg | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the negative of an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
nfxneg.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfxneg | ⊢ Ⅎ𝑥-𝑒𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxneg.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | 2 | nfxnegd 42981 | . 2 ⊢ (⊤ → Ⅎ𝑥-𝑒𝐴) |
4 | 3 | mptru 1546 | 1 ⊢ Ⅎ𝑥-𝑒𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnfc 2887 -𝑒cxne 12845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-neg 11208 df-xneg 12848 |
This theorem is referenced by: liminfvalxr 43324 xlimpnfxnegmnf 43355 liminfpnfuz 43357 xlimpnfxnegmnf2 43399 |
Copyright terms: Public domain | W3C validator |