| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfxneg | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the negative of an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| nfxneg.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfxneg | ⊢ Ⅎ𝑥-𝑒𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxneg.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | 2 | nfxnegd 45424 | . 2 ⊢ (⊤ → Ⅎ𝑥-𝑒𝐴) |
| 4 | 3 | mptru 1547 | 1 ⊢ Ⅎ𝑥-𝑒𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnfc 2876 -𝑒cxne 13011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-neg 11350 df-xneg 13014 |
| This theorem is referenced by: liminfvalxr 45768 xlimpnfxnegmnf 45799 liminfpnfuz 45801 xlimpnfxnegmnf2 45843 |
| Copyright terms: Public domain | W3C validator |