| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfxneg | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the negative of an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| nfxneg.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfxneg | ⊢ Ⅎ𝑥-𝑒𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxneg.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | 2 | nfxnegd 45444 | . 2 ⊢ (⊤ → Ⅎ𝑥-𝑒𝐴) |
| 4 | 3 | mptru 1547 | 1 ⊢ Ⅎ𝑥-𝑒𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnfc 2877 -𝑒cxne 13076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-neg 11415 df-xneg 13079 |
| This theorem is referenced by: liminfvalxr 45788 xlimpnfxnegmnf 45819 liminfpnfuz 45821 xlimpnfxnegmnf2 45863 |
| Copyright terms: Public domain | W3C validator |