Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfxnegmnf Structured version   Visualization version   GIF version

Theorem xlimpnfxnegmnf 42984
Description: A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimpnfxnegmnf.1 𝑗𝐹
xlimpnfxnegmnf.2 𝑍 = (ℤ𝑀)
xlimpnfxnegmnf.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfxnegmnf (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑍,𝑥   𝑗,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)   𝑍(𝑗)

Proof of Theorem xlimpnfxnegmnf
Dummy variables 𝑖 𝑙 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5046 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑗)))
21rexralbidv 3213 . . . . 5 (𝑥 = 𝑦 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗)))
3 fveq2 6706 . . . . . . . 8 (𝑘 = 𝑖 → (ℤ𝑘) = (ℤ𝑖))
43raleqdv 3318 . . . . . . 7 (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗) ↔ ∀𝑗 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑗)))
5 nfv 1922 . . . . . . . 8 𝑙 𝑦 ≤ (𝐹𝑗)
6 nfcv 2900 . . . . . . . . 9 𝑗𝑦
7 nfcv 2900 . . . . . . . . 9 𝑗
8 xlimpnfxnegmnf.1 . . . . . . . . . 10 𝑗𝐹
9 nfcv 2900 . . . . . . . . . 10 𝑗𝑙
108, 9nffv 6716 . . . . . . . . 9 𝑗(𝐹𝑙)
116, 7, 10nfbr 5090 . . . . . . . 8 𝑗 𝑦 ≤ (𝐹𝑙)
12 fveq2 6706 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
1312breq2d 5055 . . . . . . . 8 (𝑗 = 𝑙 → (𝑦 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑙)))
145, 11, 13cbvralw 3342 . . . . . . 7 (∀𝑗 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑗) ↔ ∀𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
154, 14bitrdi 290 . . . . . 6 (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗) ↔ ∀𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
1615cbvrexvw 3352 . . . . 5 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
172, 16bitrdi 290 . . . 4 (𝑥 = 𝑦 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
1817cbvralvw 3351 . . 3 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
1918a1i 11 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
20 simpll 767 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → 𝜑)
21 simpr 488 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
22 xnegrecl 42603 . . . . . . 7 (𝑤 ∈ ℝ → -𝑒𝑤 ∈ ℝ)
23 simpl 486 . . . . . . 7 ((∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ 𝑤 ∈ ℝ) → ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
24 breq1 5046 . . . . . . . . 9 (𝑦 = -𝑒𝑤 → (𝑦 ≤ (𝐹𝑙) ↔ -𝑒𝑤 ≤ (𝐹𝑙)))
2524rexralbidv 3213 . . . . . . . 8 (𝑦 = -𝑒𝑤 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙)))
2625rspcva 3528 . . . . . . 7 ((-𝑒𝑤 ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙))
2722, 23, 26syl2an2 686 . . . . . 6 ((∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ 𝑤 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙))
2827adantll 714 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙))
29 simpll 767 . . . . . . . . 9 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (𝜑𝑤 ∈ ℝ))
30 xlimpnfxnegmnf.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
3130uztrn2 12440 . . . . . . . . . 10 ((𝑖𝑍𝑙 ∈ (ℤ𝑖)) → 𝑙𝑍)
3231adantll 714 . . . . . . . . 9 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → 𝑙𝑍)
33 rexr 10862 . . . . . . . . . . . 12 (𝑤 ∈ ℝ → 𝑤 ∈ ℝ*)
3433ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → 𝑤 ∈ ℝ*)
35 xlimpnfxnegmnf.3 . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶ℝ*)
3635ffvelrnda 6893 . . . . . . . . . . . 12 ((𝜑𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
3736adantlr 715 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
38 xlenegcon1 42654 . . . . . . . . . . 11 ((𝑤 ∈ ℝ* ∧ (𝐹𝑙) ∈ ℝ*) → (-𝑒𝑤 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ 𝑤))
3934, 37, 38syl2anc 587 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → (-𝑒𝑤 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ 𝑤))
4039biimpd 232 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → (-𝑒𝑤 ≤ (𝐹𝑙) → -𝑒(𝐹𝑙) ≤ 𝑤))
4129, 32, 40syl2anc 587 . . . . . . . 8 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (-𝑒𝑤 ≤ (𝐹𝑙) → -𝑒(𝐹𝑙) ≤ 𝑤))
4241ralimdva 3093 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) → (∀𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙) → ∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤))
4342reximdva 3186 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤))
4443imp 410 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙)) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
4520, 21, 28, 44syl21anc 838 . . . 4 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
4645ralrimiva 3098 . . 3 ((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) → ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
47 simpll 767 . . . . 5 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → 𝜑)
48 simpr 488 . . . . 5 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
49 xnegrecl 42603 . . . . . . 7 (𝑦 ∈ ℝ → -𝑒𝑦 ∈ ℝ)
50 simpl 486 . . . . . . 7 ((∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤𝑦 ∈ ℝ) → ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
51 breq2 5047 . . . . . . . . 9 (𝑤 = -𝑒𝑦 → (-𝑒(𝐹𝑙) ≤ 𝑤 ↔ -𝑒(𝐹𝑙) ≤ -𝑒𝑦))
5251rexralbidv 3213 . . . . . . . 8 (𝑤 = -𝑒𝑦 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦))
5352rspcva 3528 . . . . . . 7 ((-𝑒𝑦 ∈ ℝ ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦)
5449, 50, 53syl2an2 686 . . . . . 6 ((∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤𝑦 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦)
5554adantll 714 . . . . 5 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦)
56 simpll 767 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (𝜑𝑦 ∈ ℝ))
5731adantll 714 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → 𝑙𝑍)
58 rexr 10862 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
5958ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → 𝑦 ∈ ℝ*)
6036adantlr 715 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
61 xleneg 12791 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ (𝐹𝑙) ∈ ℝ*) → (𝑦 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ -𝑒𝑦))
6259, 60, 61syl2anc 587 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → (𝑦 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ -𝑒𝑦))
6362biimprd 251 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → (-𝑒(𝐹𝑙) ≤ -𝑒𝑦𝑦 ≤ (𝐹𝑙)))
6456, 57, 63syl2anc 587 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (-𝑒(𝐹𝑙) ≤ -𝑒𝑦𝑦 ≤ (𝐹𝑙)))
6564ralimdva 3093 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) → (∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦 → ∀𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
6665reximdva 3186 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
6766imp 410 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
6847, 48, 55, 67syl21anc 838 . . . 4 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
6968ralrimiva 3098 . . 3 ((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) → ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
7046, 69impbida 801 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤))
71 breq2 5047 . . . . . 6 (𝑤 = 𝑥 → (-𝑒(𝐹𝑙) ≤ 𝑤 ↔ -𝑒(𝐹𝑙) ≤ 𝑥))
7271rexralbidv 3213 . . . . 5 (𝑤 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥))
73 fveq2 6706 . . . . . . . 8 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
7473raleqdv 3318 . . . . . . 7 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑘)-𝑒(𝐹𝑙) ≤ 𝑥))
7510nfxneg 42628 . . . . . . . . 9 𝑗-𝑒(𝐹𝑙)
76 nfcv 2900 . . . . . . . . 9 𝑗𝑥
7775, 7, 76nfbr 5090 . . . . . . . 8 𝑗-𝑒(𝐹𝑙) ≤ 𝑥
78 nfv 1922 . . . . . . . 8 𝑙-𝑒(𝐹𝑗) ≤ 𝑥
79 fveq2 6706 . . . . . . . . . 10 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
8079xnegeqd 42602 . . . . . . . . 9 (𝑙 = 𝑗 → -𝑒(𝐹𝑙) = -𝑒(𝐹𝑗))
8180breq1d 5053 . . . . . . . 8 (𝑙 = 𝑗 → (-𝑒(𝐹𝑙) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
8277, 78, 81cbvralw 3342 . . . . . . 7 (∀𝑙 ∈ (ℤ𝑘)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
8374, 82bitrdi 290 . . . . . 6 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
8483cbvrexvw 3352 . . . . 5 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
8572, 84bitrdi 290 . . . 4 (𝑤 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
8685cbvralvw 3351 . . 3 (∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
8786a1i 11 . 2 (𝜑 → (∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
8819, 70, 873bitrd 308 1 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wnfc 2880  wral 3054  wrex 3055   class class class wbr 5043  wf 6365  cfv 6369  cr 10711  *cxr 10849  cle 10851  cuz 12421  -𝑒cxne 12684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-po 5457  df-so 5458  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-z 12160  df-uz 12422  df-xneg 12687
This theorem is referenced by:  liminfpnfuz  42986  xlimpnfxnegmnf2  43028
  Copyright terms: Public domain W3C validator