Step | Hyp | Ref
| Expression |
1 | | breq1 5077 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑗))) |
2 | 1 | rexralbidv 3230 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ (𝐹‘𝑗))) |
3 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → (ℤ≥‘𝑘) =
(ℤ≥‘𝑖)) |
4 | 3 | raleqdv 3348 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ (𝐹‘𝑗) ↔ ∀𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑗))) |
5 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑙 𝑦 ≤ (𝐹‘𝑗) |
6 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝑦 |
7 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑗
≤ |
8 | | xlimpnfxnegmnf.1 |
. . . . . . . . . 10
⊢
Ⅎ𝑗𝐹 |
9 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑗𝑙 |
10 | 8, 9 | nffv 6784 |
. . . . . . . . 9
⊢
Ⅎ𝑗(𝐹‘𝑙) |
11 | 6, 7, 10 | nfbr 5121 |
. . . . . . . 8
⊢
Ⅎ𝑗 𝑦 ≤ (𝐹‘𝑙) |
12 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑗 = 𝑙 → (𝐹‘𝑗) = (𝐹‘𝑙)) |
13 | 12 | breq2d 5086 |
. . . . . . . 8
⊢ (𝑗 = 𝑙 → (𝑦 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑙))) |
14 | 5, 11, 13 | cbvralw 3373 |
. . . . . . 7
⊢
(∀𝑗 ∈
(ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑗) ↔ ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
15 | 4, 14 | bitrdi 287 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ (𝐹‘𝑗) ↔ ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙))) |
16 | 15 | cbvrexvw 3384 |
. . . . 5
⊢
(∃𝑘 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑘)𝑦 ≤ (𝐹‘𝑗) ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
17 | 2, 16 | bitrdi 287 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙))) |
18 | 17 | cbvralvw 3383 |
. . 3
⊢
(∀𝑥 ∈
ℝ ∃𝑘 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
19 | 18 | a1i 11 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙))) |
20 | | simpll 764 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) ∧ 𝑤 ∈ ℝ) → 𝜑) |
21 | | simpr 485 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) |
22 | | xnegrecl 42978 |
. . . . . . 7
⊢ (𝑤 ∈ ℝ →
-𝑒𝑤
∈ ℝ) |
23 | | simpl 483 |
. . . . . . 7
⊢
((∀𝑦 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑙 ∈
(ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙) ∧ 𝑤 ∈ ℝ) → ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
24 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑦 = -𝑒𝑤 → (𝑦 ≤ (𝐹‘𝑙) ↔ -𝑒𝑤 ≤ (𝐹‘𝑙))) |
25 | 24 | rexralbidv 3230 |
. . . . . . . 8
⊢ (𝑦 = -𝑒𝑤 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙) ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙))) |
26 | 25 | rspcva 3559 |
. . . . . . 7
⊢
((-𝑒𝑤 ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙)) |
27 | 22, 23, 26 | syl2an2 683 |
. . . . . 6
⊢
((∀𝑦 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑙 ∈
(ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙) ∧ 𝑤 ∈ ℝ) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙)) |
28 | 27 | adantll 711 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) ∧ 𝑤 ∈ ℝ) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙)) |
29 | | simpll 764 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑙 ∈ (ℤ≥‘𝑖)) → (𝜑 ∧ 𝑤 ∈ ℝ)) |
30 | | xlimpnfxnegmnf.2 |
. . . . . . . . . . 11
⊢ 𝑍 =
(ℤ≥‘𝑀) |
31 | 30 | uztrn2 12601 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ 𝑍 ∧ 𝑙 ∈ (ℤ≥‘𝑖)) → 𝑙 ∈ 𝑍) |
32 | 31 | adantll 711 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑙 ∈ (ℤ≥‘𝑖)) → 𝑙 ∈ 𝑍) |
33 | | rexr 11021 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ℝ → 𝑤 ∈
ℝ*) |
34 | 33 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → 𝑤 ∈ ℝ*) |
35 | | xlimpnfxnegmnf.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
36 | 35 | ffvelrnda 6961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑙 ∈ 𝑍) → (𝐹‘𝑙) ∈
ℝ*) |
37 | 36 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → (𝐹‘𝑙) ∈
ℝ*) |
38 | | xlenegcon1 43027 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℝ*
∧ (𝐹‘𝑙) ∈ ℝ*)
→ (-𝑒𝑤 ≤ (𝐹‘𝑙) ↔ -𝑒(𝐹‘𝑙) ≤ 𝑤)) |
39 | 34, 37, 38 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → (-𝑒𝑤 ≤ (𝐹‘𝑙) ↔ -𝑒(𝐹‘𝑙) ≤ 𝑤)) |
40 | 39 | biimpd 228 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → (-𝑒𝑤 ≤ (𝐹‘𝑙) → -𝑒(𝐹‘𝑙) ≤ 𝑤)) |
41 | 29, 32, 40 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑙 ∈ (ℤ≥‘𝑖)) →
(-𝑒𝑤
≤ (𝐹‘𝑙) →
-𝑒(𝐹‘𝑙) ≤ 𝑤)) |
42 | 41 | ralimdva 3108 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) → (∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙) → ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤)) |
43 | 42 | reximdva 3203 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤)) |
44 | 43 | imp 407 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙)) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) |
45 | 20, 21, 28, 44 | syl21anc 835 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) ∧ 𝑤 ∈ ℝ) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) |
46 | 45 | ralrimiva 3103 |
. . 3
⊢ ((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) → ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) |
47 | | simpll 764 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → 𝜑) |
48 | | simpr 485 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) |
49 | | xnegrecl 42978 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ →
-𝑒𝑦
∈ ℝ) |
50 | | simpl 483 |
. . . . . . 7
⊢
((∀𝑤 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑙 ∈
(ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ∧ 𝑦 ∈ ℝ) → ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) |
51 | | breq2 5078 |
. . . . . . . . 9
⊢ (𝑤 = -𝑒𝑦 →
(-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ -𝑒(𝐹‘𝑙) ≤ -𝑒𝑦)) |
52 | 51 | rexralbidv 3230 |
. . . . . . . 8
⊢ (𝑤 = -𝑒𝑦 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦)) |
53 | 52 | rspcva 3559 |
. . . . . . 7
⊢
((-𝑒𝑦 ∈ ℝ ∧ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦) |
54 | 49, 50, 53 | syl2an2 683 |
. . . . . 6
⊢
((∀𝑤 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑙 ∈
(ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ∧ 𝑦 ∈ ℝ) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦) |
55 | 54 | adantll 711 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦) |
56 | | simpll 764 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑙 ∈ (ℤ≥‘𝑖)) → (𝜑 ∧ 𝑦 ∈ ℝ)) |
57 | 31 | adantll 711 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑙 ∈ (ℤ≥‘𝑖)) → 𝑙 ∈ 𝑍) |
58 | | rexr 11021 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ*) |
59 | 58 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → 𝑦 ∈ ℝ*) |
60 | 36 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → (𝐹‘𝑙) ∈
ℝ*) |
61 | | xleneg 12952 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℝ*
∧ (𝐹‘𝑙) ∈ ℝ*)
→ (𝑦 ≤ (𝐹‘𝑙) ↔ -𝑒(𝐹‘𝑙) ≤ -𝑒𝑦)) |
62 | 59, 60, 61 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → (𝑦 ≤ (𝐹‘𝑙) ↔ -𝑒(𝐹‘𝑙) ≤ -𝑒𝑦)) |
63 | 62 | biimprd 247 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → (-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦 → 𝑦 ≤ (𝐹‘𝑙))) |
64 | 56, 57, 63 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑙 ∈ (ℤ≥‘𝑖)) →
(-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦 → 𝑦 ≤ (𝐹‘𝑙))) |
65 | 64 | ralimdva 3108 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) → (∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦 → ∀𝑙 ∈
(ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙))) |
66 | 65 | reximdva 3203 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦 → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙))) |
67 | 66 | imp 407 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
68 | 47, 48, 55, 67 | syl21anc 835 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
69 | 68 | ralrimiva 3103 |
. . 3
⊢ ((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) → ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
70 | 46, 69 | impbida 798 |
. 2
⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙) ↔ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤)) |
71 | | breq2 5078 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ -𝑒(𝐹‘𝑙) ≤ 𝑥)) |
72 | 71 | rexralbidv 3230 |
. . . . 5
⊢ (𝑤 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑥)) |
73 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑖 = 𝑘 → (ℤ≥‘𝑖) =
(ℤ≥‘𝑘)) |
74 | 73 | raleqdv 3348 |
. . . . . . 7
⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑙) ≤ 𝑥)) |
75 | 10 | nfxneg 43001 |
. . . . . . . . 9
⊢
Ⅎ𝑗-𝑒(𝐹‘𝑙) |
76 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝑥 |
77 | 75, 7, 76 | nfbr 5121 |
. . . . . . . 8
⊢
Ⅎ𝑗-𝑒(𝐹‘𝑙) ≤ 𝑥 |
78 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑙-𝑒(𝐹‘𝑗) ≤ 𝑥 |
79 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) |
80 | 79 | xnegeqd 42977 |
. . . . . . . . 9
⊢ (𝑙 = 𝑗 → -𝑒(𝐹‘𝑙) = -𝑒(𝐹‘𝑗)) |
81 | 80 | breq1d 5084 |
. . . . . . . 8
⊢ (𝑙 = 𝑗 → (-𝑒(𝐹‘𝑙) ≤ 𝑥 ↔ -𝑒(𝐹‘𝑗) ≤ 𝑥)) |
82 | 77, 78, 81 | cbvralw 3373 |
. . . . . . 7
⊢
(∀𝑙 ∈
(ℤ≥‘𝑘)-𝑒(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
83 | 74, 82 | bitrdi 287 |
. . . . . 6
⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
84 | 83 | cbvrexvw 3384 |
. . . . 5
⊢
(∃𝑖 ∈
𝑍 ∀𝑙 ∈
(ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
85 | 72, 84 | bitrdi 287 |
. . . 4
⊢ (𝑤 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
86 | 85 | cbvralvw 3383 |
. . 3
⊢
(∀𝑤 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑙 ∈
(ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
87 | 86 | a1i 11 |
. 2
⊢ (𝜑 → (∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
88 | 19, 70, 87 | 3bitrd 305 |
1
⊢ (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |