Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfxnegmnf Structured version   Visualization version   GIF version

Theorem xlimpnfxnegmnf 45805
Description: A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimpnfxnegmnf.1 𝑗𝐹
xlimpnfxnegmnf.2 𝑍 = (ℤ𝑀)
xlimpnfxnegmnf.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfxnegmnf (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑍,𝑥   𝑗,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)   𝑍(𝑗)

Proof of Theorem xlimpnfxnegmnf
Dummy variables 𝑖 𝑙 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5105 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑗)))
21rexralbidv 3201 . . . . 5 (𝑥 = 𝑦 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗)))
3 fveq2 6840 . . . . . . . 8 (𝑘 = 𝑖 → (ℤ𝑘) = (ℤ𝑖))
43raleqdv 3296 . . . . . . 7 (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗) ↔ ∀𝑗 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑗)))
5 nfv 1914 . . . . . . . 8 𝑙 𝑦 ≤ (𝐹𝑗)
6 nfcv 2891 . . . . . . . . 9 𝑗𝑦
7 nfcv 2891 . . . . . . . . 9 𝑗
8 xlimpnfxnegmnf.1 . . . . . . . . . 10 𝑗𝐹
9 nfcv 2891 . . . . . . . . . 10 𝑗𝑙
108, 9nffv 6850 . . . . . . . . 9 𝑗(𝐹𝑙)
116, 7, 10nfbr 5149 . . . . . . . 8 𝑗 𝑦 ≤ (𝐹𝑙)
12 fveq2 6840 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
1312breq2d 5114 . . . . . . . 8 (𝑗 = 𝑙 → (𝑦 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑙)))
145, 11, 13cbvralw 3278 . . . . . . 7 (∀𝑗 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑗) ↔ ∀𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
154, 14bitrdi 287 . . . . . 6 (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗) ↔ ∀𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
1615cbvrexvw 3214 . . . . 5 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
172, 16bitrdi 287 . . . 4 (𝑥 = 𝑦 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
1817cbvralvw 3213 . . 3 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
1918a1i 11 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
20 simpll 766 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → 𝜑)
21 simpr 484 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
22 xnegrecl 45427 . . . . . . 7 (𝑤 ∈ ℝ → -𝑒𝑤 ∈ ℝ)
23 simpl 482 . . . . . . 7 ((∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ 𝑤 ∈ ℝ) → ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
24 breq1 5105 . . . . . . . . 9 (𝑦 = -𝑒𝑤 → (𝑦 ≤ (𝐹𝑙) ↔ -𝑒𝑤 ≤ (𝐹𝑙)))
2524rexralbidv 3201 . . . . . . . 8 (𝑦 = -𝑒𝑤 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙)))
2625rspcva 3583 . . . . . . 7 ((-𝑒𝑤 ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙))
2722, 23, 26syl2an2 686 . . . . . 6 ((∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ 𝑤 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙))
2827adantll 714 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙))
29 simpll 766 . . . . . . . . 9 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (𝜑𝑤 ∈ ℝ))
30 xlimpnfxnegmnf.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
3130uztrn2 12788 . . . . . . . . . 10 ((𝑖𝑍𝑙 ∈ (ℤ𝑖)) → 𝑙𝑍)
3231adantll 714 . . . . . . . . 9 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → 𝑙𝑍)
33 rexr 11196 . . . . . . . . . . . 12 (𝑤 ∈ ℝ → 𝑤 ∈ ℝ*)
3433ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → 𝑤 ∈ ℝ*)
35 xlimpnfxnegmnf.3 . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶ℝ*)
3635ffvelcdmda 7038 . . . . . . . . . . . 12 ((𝜑𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
3736adantlr 715 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
38 xlenegcon1 45475 . . . . . . . . . . 11 ((𝑤 ∈ ℝ* ∧ (𝐹𝑙) ∈ ℝ*) → (-𝑒𝑤 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ 𝑤))
3934, 37, 38syl2anc 584 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → (-𝑒𝑤 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ 𝑤))
4039biimpd 229 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → (-𝑒𝑤 ≤ (𝐹𝑙) → -𝑒(𝐹𝑙) ≤ 𝑤))
4129, 32, 40syl2anc 584 . . . . . . . 8 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (-𝑒𝑤 ≤ (𝐹𝑙) → -𝑒(𝐹𝑙) ≤ 𝑤))
4241ralimdva 3145 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) → (∀𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙) → ∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤))
4342reximdva 3146 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤))
4443imp 406 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙)) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
4520, 21, 28, 44syl21anc 837 . . . 4 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
4645ralrimiva 3125 . . 3 ((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) → ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
47 simpll 766 . . . . 5 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → 𝜑)
48 simpr 484 . . . . 5 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
49 xnegrecl 45427 . . . . . . 7 (𝑦 ∈ ℝ → -𝑒𝑦 ∈ ℝ)
50 simpl 482 . . . . . . 7 ((∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤𝑦 ∈ ℝ) → ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
51 breq2 5106 . . . . . . . . 9 (𝑤 = -𝑒𝑦 → (-𝑒(𝐹𝑙) ≤ 𝑤 ↔ -𝑒(𝐹𝑙) ≤ -𝑒𝑦))
5251rexralbidv 3201 . . . . . . . 8 (𝑤 = -𝑒𝑦 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦))
5352rspcva 3583 . . . . . . 7 ((-𝑒𝑦 ∈ ℝ ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦)
5449, 50, 53syl2an2 686 . . . . . 6 ((∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤𝑦 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦)
5554adantll 714 . . . . 5 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦)
56 simpll 766 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (𝜑𝑦 ∈ ℝ))
5731adantll 714 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → 𝑙𝑍)
58 rexr 11196 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
5958ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → 𝑦 ∈ ℝ*)
6036adantlr 715 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
61 xleneg 13154 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ (𝐹𝑙) ∈ ℝ*) → (𝑦 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ -𝑒𝑦))
6259, 60, 61syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → (𝑦 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ -𝑒𝑦))
6362biimprd 248 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → (-𝑒(𝐹𝑙) ≤ -𝑒𝑦𝑦 ≤ (𝐹𝑙)))
6456, 57, 63syl2anc 584 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (-𝑒(𝐹𝑙) ≤ -𝑒𝑦𝑦 ≤ (𝐹𝑙)))
6564ralimdva 3145 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) → (∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦 → ∀𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
6665reximdva 3146 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
6766imp 406 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
6847, 48, 55, 67syl21anc 837 . . . 4 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
6968ralrimiva 3125 . . 3 ((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) → ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
7046, 69impbida 800 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤))
71 breq2 5106 . . . . . 6 (𝑤 = 𝑥 → (-𝑒(𝐹𝑙) ≤ 𝑤 ↔ -𝑒(𝐹𝑙) ≤ 𝑥))
7271rexralbidv 3201 . . . . 5 (𝑤 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥))
73 fveq2 6840 . . . . . . . 8 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
7473raleqdv 3296 . . . . . . 7 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑘)-𝑒(𝐹𝑙) ≤ 𝑥))
7510nfxneg 45450 . . . . . . . . 9 𝑗-𝑒(𝐹𝑙)
76 nfcv 2891 . . . . . . . . 9 𝑗𝑥
7775, 7, 76nfbr 5149 . . . . . . . 8 𝑗-𝑒(𝐹𝑙) ≤ 𝑥
78 nfv 1914 . . . . . . . 8 𝑙-𝑒(𝐹𝑗) ≤ 𝑥
79 fveq2 6840 . . . . . . . . . 10 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
8079xnegeqd 45426 . . . . . . . . 9 (𝑙 = 𝑗 → -𝑒(𝐹𝑙) = -𝑒(𝐹𝑗))
8180breq1d 5112 . . . . . . . 8 (𝑙 = 𝑗 → (-𝑒(𝐹𝑙) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
8277, 78, 81cbvralw 3278 . . . . . . 7 (∀𝑙 ∈ (ℤ𝑘)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
8374, 82bitrdi 287 . . . . . 6 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
8483cbvrexvw 3214 . . . . 5 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
8572, 84bitrdi 287 . . . 4 (𝑤 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
8685cbvralvw 3213 . . 3 (∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
8786a1i 11 . 2 (𝜑 → (∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
8819, 70, 873bitrd 305 1 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053   class class class wbr 5102  wf 6495  cfv 6499  cr 11043  *cxr 11183  cle 11185  cuz 12769  -𝑒cxne 13045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-z 12506  df-uz 12770  df-xneg 13048
This theorem is referenced by:  liminfpnfuz  45807  xlimpnfxnegmnf2  45849
  Copyright terms: Public domain W3C validator