Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfxnegmnf Structured version   Visualization version   GIF version

Theorem xlimpnfxnegmnf 45774
Description: A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimpnfxnegmnf.1 𝑗𝐹
xlimpnfxnegmnf.2 𝑍 = (ℤ𝑀)
xlimpnfxnegmnf.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfxnegmnf (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑍,𝑥   𝑗,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)   𝑍(𝑗)

Proof of Theorem xlimpnfxnegmnf
Dummy variables 𝑖 𝑙 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5128 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑗)))
21rexralbidv 3210 . . . . 5 (𝑥 = 𝑦 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗)))
3 fveq2 6887 . . . . . . . 8 (𝑘 = 𝑖 → (ℤ𝑘) = (ℤ𝑖))
43raleqdv 3310 . . . . . . 7 (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗) ↔ ∀𝑗 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑗)))
5 nfv 1913 . . . . . . . 8 𝑙 𝑦 ≤ (𝐹𝑗)
6 nfcv 2897 . . . . . . . . 9 𝑗𝑦
7 nfcv 2897 . . . . . . . . 9 𝑗
8 xlimpnfxnegmnf.1 . . . . . . . . . 10 𝑗𝐹
9 nfcv 2897 . . . . . . . . . 10 𝑗𝑙
108, 9nffv 6897 . . . . . . . . 9 𝑗(𝐹𝑙)
116, 7, 10nfbr 5172 . . . . . . . 8 𝑗 𝑦 ≤ (𝐹𝑙)
12 fveq2 6887 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
1312breq2d 5137 . . . . . . . 8 (𝑗 = 𝑙 → (𝑦 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑙)))
145, 11, 13cbvralw 3290 . . . . . . 7 (∀𝑗 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑗) ↔ ∀𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
154, 14bitrdi 287 . . . . . 6 (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗) ↔ ∀𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
1615cbvrexvw 3225 . . . . 5 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ (𝐹𝑗) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
172, 16bitrdi 287 . . . 4 (𝑥 = 𝑦 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
1817cbvralvw 3224 . . 3 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
1918a1i 11 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
20 simpll 766 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → 𝜑)
21 simpr 484 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
22 xnegrecl 45394 . . . . . . 7 (𝑤 ∈ ℝ → -𝑒𝑤 ∈ ℝ)
23 simpl 482 . . . . . . 7 ((∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ 𝑤 ∈ ℝ) → ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
24 breq1 5128 . . . . . . . . 9 (𝑦 = -𝑒𝑤 → (𝑦 ≤ (𝐹𝑙) ↔ -𝑒𝑤 ≤ (𝐹𝑙)))
2524rexralbidv 3210 . . . . . . . 8 (𝑦 = -𝑒𝑤 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙)))
2625rspcva 3604 . . . . . . 7 ((-𝑒𝑤 ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙))
2722, 23, 26syl2an2 686 . . . . . 6 ((∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ 𝑤 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙))
2827adantll 714 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙))
29 simpll 766 . . . . . . . . 9 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (𝜑𝑤 ∈ ℝ))
30 xlimpnfxnegmnf.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
3130uztrn2 12880 . . . . . . . . . 10 ((𝑖𝑍𝑙 ∈ (ℤ𝑖)) → 𝑙𝑍)
3231adantll 714 . . . . . . . . 9 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → 𝑙𝑍)
33 rexr 11290 . . . . . . . . . . . 12 (𝑤 ∈ ℝ → 𝑤 ∈ ℝ*)
3433ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → 𝑤 ∈ ℝ*)
35 xlimpnfxnegmnf.3 . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶ℝ*)
3635ffvelcdmda 7085 . . . . . . . . . . . 12 ((𝜑𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
3736adantlr 715 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
38 xlenegcon1 45442 . . . . . . . . . . 11 ((𝑤 ∈ ℝ* ∧ (𝐹𝑙) ∈ ℝ*) → (-𝑒𝑤 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ 𝑤))
3934, 37, 38syl2anc 584 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → (-𝑒𝑤 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ 𝑤))
4039biimpd 229 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑙𝑍) → (-𝑒𝑤 ≤ (𝐹𝑙) → -𝑒(𝐹𝑙) ≤ 𝑤))
4129, 32, 40syl2anc 584 . . . . . . . 8 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (-𝑒𝑤 ≤ (𝐹𝑙) → -𝑒(𝐹𝑙) ≤ 𝑤))
4241ralimdva 3154 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖𝑍) → (∀𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙) → ∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤))
4342reximdva 3155 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤))
4443imp 406 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒𝑤 ≤ (𝐹𝑙)) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
4520, 21, 28, 44syl21anc 837 . . . 4 (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) ∧ 𝑤 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
4645ralrimiva 3133 . . 3 ((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)) → ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
47 simpll 766 . . . . 5 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → 𝜑)
48 simpr 484 . . . . 5 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
49 xnegrecl 45394 . . . . . . 7 (𝑦 ∈ ℝ → -𝑒𝑦 ∈ ℝ)
50 simpl 482 . . . . . . 7 ((∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤𝑦 ∈ ℝ) → ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤)
51 breq2 5129 . . . . . . . . 9 (𝑤 = -𝑒𝑦 → (-𝑒(𝐹𝑙) ≤ 𝑤 ↔ -𝑒(𝐹𝑙) ≤ -𝑒𝑦))
5251rexralbidv 3210 . . . . . . . 8 (𝑤 = -𝑒𝑦 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦))
5352rspcva 3604 . . . . . . 7 ((-𝑒𝑦 ∈ ℝ ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦)
5449, 50, 53syl2an2 686 . . . . . 6 ((∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤𝑦 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦)
5554adantll 714 . . . . 5 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦)
56 simpll 766 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (𝜑𝑦 ∈ ℝ))
5731adantll 714 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → 𝑙𝑍)
58 rexr 11290 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
5958ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → 𝑦 ∈ ℝ*)
6036adantlr 715 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
61 xleneg 13243 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ (𝐹𝑙) ∈ ℝ*) → (𝑦 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ -𝑒𝑦))
6259, 60, 61syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → (𝑦 ≤ (𝐹𝑙) ↔ -𝑒(𝐹𝑙) ≤ -𝑒𝑦))
6362biimprd 248 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑙𝑍) → (-𝑒(𝐹𝑙) ≤ -𝑒𝑦𝑦 ≤ (𝐹𝑙)))
6456, 57, 63syl2anc 584 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑙 ∈ (ℤ𝑖)) → (-𝑒(𝐹𝑙) ≤ -𝑒𝑦𝑦 ≤ (𝐹𝑙)))
6564ralimdva 3154 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) → (∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦 → ∀𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
6665reximdva 3155 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙)))
6766imp 406 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ -𝑒𝑦) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
6847, 48, 55, 67syl21anc 837 . . . 4 (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
6968ralrimiva 3133 . . 3 ((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤) → ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙))
7046, 69impbida 800 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤))
71 breq2 5129 . . . . . 6 (𝑤 = 𝑥 → (-𝑒(𝐹𝑙) ≤ 𝑤 ↔ -𝑒(𝐹𝑙) ≤ 𝑥))
7271rexralbidv 3210 . . . . 5 (𝑤 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥))
73 fveq2 6887 . . . . . . . 8 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
7473raleqdv 3310 . . . . . . 7 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑘)-𝑒(𝐹𝑙) ≤ 𝑥))
7510nfxneg 45417 . . . . . . . . 9 𝑗-𝑒(𝐹𝑙)
76 nfcv 2897 . . . . . . . . 9 𝑗𝑥
7775, 7, 76nfbr 5172 . . . . . . . 8 𝑗-𝑒(𝐹𝑙) ≤ 𝑥
78 nfv 1913 . . . . . . . 8 𝑙-𝑒(𝐹𝑗) ≤ 𝑥
79 fveq2 6887 . . . . . . . . . 10 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
8079xnegeqd 45393 . . . . . . . . 9 (𝑙 = 𝑗 → -𝑒(𝐹𝑙) = -𝑒(𝐹𝑗))
8180breq1d 5135 . . . . . . . 8 (𝑙 = 𝑗 → (-𝑒(𝐹𝑙) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
8277, 78, 81cbvralw 3290 . . . . . . 7 (∀𝑙 ∈ (ℤ𝑘)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
8374, 82bitrdi 287 . . . . . 6 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
8483cbvrexvw 3225 . . . . 5 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
8572, 84bitrdi 287 . . . 4 (𝑤 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
8685cbvralvw 3224 . . 3 (∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
8786a1i 11 . 2 (𝜑 → (∀𝑤 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)-𝑒(𝐹𝑙) ≤ 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
8819, 70, 873bitrd 305 1 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wnfc 2882  wral 3050  wrex 3059   class class class wbr 5125  wf 6538  cfv 6542  cr 11137  *cxr 11277  cle 11279  cuz 12861  -𝑒cxne 13134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-po 5574  df-so 5575  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-z 12598  df-uz 12862  df-xneg 13137
This theorem is referenced by:  liminfpnfuz  45776  xlimpnfxnegmnf2  45818
  Copyright terms: Public domain W3C validator