| Step | Hyp | Ref
| Expression |
| 1 | | breq1 5128 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑗))) |
| 2 | 1 | rexralbidv 3210 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ (𝐹‘𝑗))) |
| 3 | | fveq2 6887 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → (ℤ≥‘𝑘) =
(ℤ≥‘𝑖)) |
| 4 | 3 | raleqdv 3310 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ (𝐹‘𝑗) ↔ ∀𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑗))) |
| 5 | | nfv 1913 |
. . . . . . . 8
⊢
Ⅎ𝑙 𝑦 ≤ (𝐹‘𝑗) |
| 6 | | nfcv 2897 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝑦 |
| 7 | | nfcv 2897 |
. . . . . . . . 9
⊢
Ⅎ𝑗
≤ |
| 8 | | xlimpnfxnegmnf.1 |
. . . . . . . . . 10
⊢
Ⅎ𝑗𝐹 |
| 9 | | nfcv 2897 |
. . . . . . . . . 10
⊢
Ⅎ𝑗𝑙 |
| 10 | 8, 9 | nffv 6897 |
. . . . . . . . 9
⊢
Ⅎ𝑗(𝐹‘𝑙) |
| 11 | 6, 7, 10 | nfbr 5172 |
. . . . . . . 8
⊢
Ⅎ𝑗 𝑦 ≤ (𝐹‘𝑙) |
| 12 | | fveq2 6887 |
. . . . . . . . 9
⊢ (𝑗 = 𝑙 → (𝐹‘𝑗) = (𝐹‘𝑙)) |
| 13 | 12 | breq2d 5137 |
. . . . . . . 8
⊢ (𝑗 = 𝑙 → (𝑦 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑙))) |
| 14 | 5, 11, 13 | cbvralw 3290 |
. . . . . . 7
⊢
(∀𝑗 ∈
(ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑗) ↔ ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
| 15 | 4, 14 | bitrdi 287 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ (𝐹‘𝑗) ↔ ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙))) |
| 16 | 15 | cbvrexvw 3225 |
. . . . 5
⊢
(∃𝑘 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑘)𝑦 ≤ (𝐹‘𝑗) ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
| 17 | 2, 16 | bitrdi 287 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙))) |
| 18 | 17 | cbvralvw 3224 |
. . 3
⊢
(∀𝑥 ∈
ℝ ∃𝑘 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
| 19 | 18 | a1i 11 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙))) |
| 20 | | simpll 766 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) ∧ 𝑤 ∈ ℝ) → 𝜑) |
| 21 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) |
| 22 | | xnegrecl 45394 |
. . . . . . 7
⊢ (𝑤 ∈ ℝ →
-𝑒𝑤
∈ ℝ) |
| 23 | | simpl 482 |
. . . . . . 7
⊢
((∀𝑦 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑙 ∈
(ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙) ∧ 𝑤 ∈ ℝ) → ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
| 24 | | breq1 5128 |
. . . . . . . . 9
⊢ (𝑦 = -𝑒𝑤 → (𝑦 ≤ (𝐹‘𝑙) ↔ -𝑒𝑤 ≤ (𝐹‘𝑙))) |
| 25 | 24 | rexralbidv 3210 |
. . . . . . . 8
⊢ (𝑦 = -𝑒𝑤 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙) ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙))) |
| 26 | 25 | rspcva 3604 |
. . . . . . 7
⊢
((-𝑒𝑤 ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙)) |
| 27 | 22, 23, 26 | syl2an2 686 |
. . . . . 6
⊢
((∀𝑦 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑙 ∈
(ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙) ∧ 𝑤 ∈ ℝ) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙)) |
| 28 | 27 | adantll 714 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) ∧ 𝑤 ∈ ℝ) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙)) |
| 29 | | simpll 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑙 ∈ (ℤ≥‘𝑖)) → (𝜑 ∧ 𝑤 ∈ ℝ)) |
| 30 | | xlimpnfxnegmnf.2 |
. . . . . . . . . . 11
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 31 | 30 | uztrn2 12880 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ 𝑍 ∧ 𝑙 ∈ (ℤ≥‘𝑖)) → 𝑙 ∈ 𝑍) |
| 32 | 31 | adantll 714 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑙 ∈ (ℤ≥‘𝑖)) → 𝑙 ∈ 𝑍) |
| 33 | | rexr 11290 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ℝ → 𝑤 ∈
ℝ*) |
| 34 | 33 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → 𝑤 ∈ ℝ*) |
| 35 | | xlimpnfxnegmnf.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| 36 | 35 | ffvelcdmda 7085 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑙 ∈ 𝑍) → (𝐹‘𝑙) ∈
ℝ*) |
| 37 | 36 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → (𝐹‘𝑙) ∈
ℝ*) |
| 38 | | xlenegcon1 45442 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℝ*
∧ (𝐹‘𝑙) ∈ ℝ*)
→ (-𝑒𝑤 ≤ (𝐹‘𝑙) ↔ -𝑒(𝐹‘𝑙) ≤ 𝑤)) |
| 39 | 34, 37, 38 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → (-𝑒𝑤 ≤ (𝐹‘𝑙) ↔ -𝑒(𝐹‘𝑙) ≤ 𝑤)) |
| 40 | 39 | biimpd 229 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → (-𝑒𝑤 ≤ (𝐹‘𝑙) → -𝑒(𝐹‘𝑙) ≤ 𝑤)) |
| 41 | 29, 32, 40 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑙 ∈ (ℤ≥‘𝑖)) →
(-𝑒𝑤
≤ (𝐹‘𝑙) →
-𝑒(𝐹‘𝑙) ≤ 𝑤)) |
| 42 | 41 | ralimdva 3154 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) → (∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙) → ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤)) |
| 43 | 42 | reximdva 3155 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤)) |
| 44 | 43 | imp 406 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒𝑤 ≤ (𝐹‘𝑙)) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) |
| 45 | 20, 21, 28, 44 | syl21anc 837 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) ∧ 𝑤 ∈ ℝ) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) |
| 46 | 45 | ralrimiva 3133 |
. . 3
⊢ ((𝜑 ∧ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) → ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) |
| 47 | | simpll 766 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → 𝜑) |
| 48 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) |
| 49 | | xnegrecl 45394 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ →
-𝑒𝑦
∈ ℝ) |
| 50 | | simpl 482 |
. . . . . . 7
⊢
((∀𝑤 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑙 ∈
(ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ∧ 𝑦 ∈ ℝ) → ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) |
| 51 | | breq2 5129 |
. . . . . . . . 9
⊢ (𝑤 = -𝑒𝑦 →
(-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ -𝑒(𝐹‘𝑙) ≤ -𝑒𝑦)) |
| 52 | 51 | rexralbidv 3210 |
. . . . . . . 8
⊢ (𝑤 = -𝑒𝑦 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦)) |
| 53 | 52 | rspcva 3604 |
. . . . . . 7
⊢
((-𝑒𝑦 ∈ ℝ ∧ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦) |
| 54 | 49, 50, 53 | syl2an2 686 |
. . . . . 6
⊢
((∀𝑤 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑙 ∈
(ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ∧ 𝑦 ∈ ℝ) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦) |
| 55 | 54 | adantll 714 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦) |
| 56 | | simpll 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑙 ∈ (ℤ≥‘𝑖)) → (𝜑 ∧ 𝑦 ∈ ℝ)) |
| 57 | 31 | adantll 714 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑙 ∈ (ℤ≥‘𝑖)) → 𝑙 ∈ 𝑍) |
| 58 | | rexr 11290 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ*) |
| 59 | 58 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → 𝑦 ∈ ℝ*) |
| 60 | 36 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → (𝐹‘𝑙) ∈
ℝ*) |
| 61 | | xleneg 13243 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℝ*
∧ (𝐹‘𝑙) ∈ ℝ*)
→ (𝑦 ≤ (𝐹‘𝑙) ↔ -𝑒(𝐹‘𝑙) ≤ -𝑒𝑦)) |
| 62 | 59, 60, 61 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → (𝑦 ≤ (𝐹‘𝑙) ↔ -𝑒(𝐹‘𝑙) ≤ -𝑒𝑦)) |
| 63 | 62 | biimprd 248 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ 𝑍) → (-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦 → 𝑦 ≤ (𝐹‘𝑙))) |
| 64 | 56, 57, 63 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑙 ∈ (ℤ≥‘𝑖)) →
(-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦 → 𝑦 ≤ (𝐹‘𝑙))) |
| 65 | 64 | ralimdva 3154 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) → (∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦 → ∀𝑙 ∈
(ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙))) |
| 66 | 65 | reximdva 3155 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦 → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙))) |
| 67 | 66 | imp 406 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ -𝑒𝑦) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
| 68 | 47, 48, 55, 67 | syl21anc 837 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) ∧ 𝑦 ∈ ℝ) → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
| 69 | 68 | ralrimiva 3133 |
. . 3
⊢ ((𝜑 ∧ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤) → ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙)) |
| 70 | 46, 69 | impbida 800 |
. 2
⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑙) ↔ ∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤)) |
| 71 | | breq2 5129 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ -𝑒(𝐹‘𝑙) ≤ 𝑥)) |
| 72 | 71 | rexralbidv 3210 |
. . . . 5
⊢ (𝑤 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑥)) |
| 73 | | fveq2 6887 |
. . . . . . . 8
⊢ (𝑖 = 𝑘 → (ℤ≥‘𝑖) =
(ℤ≥‘𝑘)) |
| 74 | 73 | raleqdv 3310 |
. . . . . . 7
⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑙) ≤ 𝑥)) |
| 75 | 10 | nfxneg 45417 |
. . . . . . . . 9
⊢
Ⅎ𝑗-𝑒(𝐹‘𝑙) |
| 76 | | nfcv 2897 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝑥 |
| 77 | 75, 7, 76 | nfbr 5172 |
. . . . . . . 8
⊢
Ⅎ𝑗-𝑒(𝐹‘𝑙) ≤ 𝑥 |
| 78 | | nfv 1913 |
. . . . . . . 8
⊢
Ⅎ𝑙-𝑒(𝐹‘𝑗) ≤ 𝑥 |
| 79 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) |
| 80 | 79 | xnegeqd 45393 |
. . . . . . . . 9
⊢ (𝑙 = 𝑗 → -𝑒(𝐹‘𝑙) = -𝑒(𝐹‘𝑗)) |
| 81 | 80 | breq1d 5135 |
. . . . . . . 8
⊢ (𝑙 = 𝑗 → (-𝑒(𝐹‘𝑙) ≤ 𝑥 ↔ -𝑒(𝐹‘𝑗) ≤ 𝑥)) |
| 82 | 77, 78, 81 | cbvralw 3290 |
. . . . . . 7
⊢
(∀𝑙 ∈
(ℤ≥‘𝑘)-𝑒(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
| 83 | 74, 82 | bitrdi 287 |
. . . . . 6
⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
| 84 | 83 | cbvrexvw 3225 |
. . . . 5
⊢
(∃𝑖 ∈
𝑍 ∀𝑙 ∈
(ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
| 85 | 72, 84 | bitrdi 287 |
. . . 4
⊢ (𝑤 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
| 86 | 85 | cbvralvw 3224 |
. . 3
⊢
(∀𝑤 ∈
ℝ ∃𝑖 ∈
𝑍 ∀𝑙 ∈
(ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
| 87 | 86 | a1i 11 |
. 2
⊢ (𝜑 → (∀𝑤 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)-𝑒(𝐹‘𝑙) ≤ 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
| 88 | 19, 70, 87 | 3bitrd 305 |
1
⊢ (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |