Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzxrd Structured version   Visualization version   GIF version

Theorem uzxrd 45379
Description: An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
uzxrd.1 𝑍 = (ℤ𝑀)
uzxrd.2 (𝜑𝐴𝑍)
Assertion
Ref Expression
uzxrd (𝜑𝐴 ∈ ℝ*)

Proof of Theorem uzxrd
StepHypRef Expression
1 ressxr 11336 . 2 ℝ ⊆ ℝ*
2 uzxrd.1 . . 3 𝑍 = (ℤ𝑀)
3 uzxrd.2 . . 3 (𝜑𝐴𝑍)
42, 3uzred 45360 . 2 (𝜑𝐴 ∈ ℝ)
51, 4sselid 4006 1 (𝜑𝐴 ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6575  cr 11185  *cxr 11325  cuz 12905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-cnex 11242  ax-resscn 11243
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-fv 6583  df-ov 7453  df-xr 11330  df-neg 11525  df-z 12642  df-uz 12906
This theorem is referenced by:  uzxr  45385  liminflelimsupuz  45708
  Copyright terms: Public domain W3C validator