Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzxrd Structured version   Visualization version   GIF version

Theorem uzxrd 44982
Description: An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
uzxrd.1 𝑍 = (ℤ𝑀)
uzxrd.2 (𝜑𝐴𝑍)
Assertion
Ref Expression
uzxrd (𝜑𝐴 ∈ ℝ*)

Proof of Theorem uzxrd
StepHypRef Expression
1 ressxr 11290 . 2 ℝ ⊆ ℝ*
2 uzxrd.1 . . 3 𝑍 = (ℤ𝑀)
3 uzxrd.2 . . 3 (𝜑𝐴𝑍)
42, 3uzred 44963 . 2 (𝜑𝐴 ∈ ℝ)
51, 4sselid 3974 1 (𝜑𝐴 ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6549  cr 11139  *cxr 11279  cuz 12855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-cnex 11196  ax-resscn 11197
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-xr 11284  df-neg 11479  df-z 12592  df-uz 12856
This theorem is referenced by:  uzxr  44988  liminflelimsupuz  45311
  Copyright terms: Public domain W3C validator