Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzxrd Structured version   Visualization version   GIF version

Theorem uzxrd 42542
Description: An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
uzxrd.1 𝑍 = (ℤ𝑀)
uzxrd.2 (𝜑𝐴𝑍)
Assertion
Ref Expression
uzxrd (𝜑𝐴 ∈ ℝ*)

Proof of Theorem uzxrd
StepHypRef Expression
1 ressxr 10763 . 2 ℝ ⊆ ℝ*
2 uzxrd.1 . . 3 𝑍 = (ℤ𝑀)
3 uzxrd.2 . . 3 (𝜑𝐴𝑍)
42, 3uzred 42521 . 2 (𝜑𝐴 ∈ ℝ)
51, 4sseldi 3875 1 (𝜑𝐴 ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  cfv 6339  cr 10614  *cxr 10752  cuz 12324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-cnex 10671  ax-resscn 10672
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-fv 6347  df-ov 7173  df-xr 10757  df-neg 10951  df-z 12063  df-uz 12325
This theorem is referenced by:  uzxr  42548  liminflelimsupuz  42868
  Copyright terms: Public domain W3C validator