| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimpnfxnegmnf2 | Structured version Visualization version GIF version | ||
| Description: A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| Ref | Expression |
|---|---|
| xlimpnfxnegmnf2.j | ⊢ Ⅎ𝑗𝐹 |
| xlimpnfxnegmnf2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimpnfxnegmnf2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimpnfxnegmnf2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| Ref | Expression |
|---|---|
| xlimpnfxnegmnf2 | ⊢ (𝜑 → (𝐹~~>*+∞ ↔ (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimpnfxnegmnf2.j | . . 3 ⊢ Ⅎ𝑗𝐹 | |
| 2 | xlimpnfxnegmnf2.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | xlimpnfxnegmnf2.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 4 | 1, 2, 3 | xlimpnfxnegmnf 45805 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
| 5 | xlimpnfxnegmnf2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 6 | 1, 5, 2, 3 | xlimpnf 45833 | . 2 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗))) |
| 7 | nfmpt1 5191 | . . . 4 ⊢ Ⅎ𝑗(𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)) | |
| 8 | 3 | ffvelcdmda 7018 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ*) |
| 9 | 8 | xnegcld 13202 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝑒(𝐹‘𝑘) ∈ ℝ*) |
| 10 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘-𝑒(𝐹‘𝑗) | |
| 11 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑗𝑘 | |
| 12 | 1, 11 | nffv 6832 | . . . . . . 7 ⊢ Ⅎ𝑗(𝐹‘𝑘) |
| 13 | 12 | nfxneg 45450 | . . . . . 6 ⊢ Ⅎ𝑗-𝑒(𝐹‘𝑘) |
| 14 | fveq2 6822 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
| 15 | 14 | xnegeqd 45426 | . . . . . 6 ⊢ (𝑗 = 𝑘 → -𝑒(𝐹‘𝑗) = -𝑒(𝐹‘𝑘)) |
| 16 | 10, 13, 15 | cbvmpt 5194 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)) = (𝑘 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑘)) |
| 17 | 9, 16 | fmptd 7048 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)):𝑍⟶ℝ*) |
| 18 | 7, 5, 2, 17 | xlimmnf 45832 | . . 3 ⊢ (𝜑 → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥)) |
| 19 | 2 | uztrn2 12754 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ 𝑍) |
| 20 | xnegex 13110 | . . . . . . . . 9 ⊢ -𝑒(𝐹‘𝑗) ∈ V | |
| 21 | fvmpt4 45226 | . . . . . . . . 9 ⊢ ((𝑗 ∈ 𝑍 ∧ -𝑒(𝐹‘𝑗) ∈ V) → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) = -𝑒(𝐹‘𝑗)) | |
| 22 | 20, 21 | mpan2 691 | . . . . . . . 8 ⊢ (𝑗 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) = -𝑒(𝐹‘𝑗)) |
| 23 | 22 | breq1d 5102 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹‘𝑗) ≤ 𝑥)) |
| 24 | 19, 23 | syl 17 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹‘𝑗) ≤ 𝑥)) |
| 25 | 24 | ralbidva 3150 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → (∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
| 26 | 25 | rexbiia 3074 | . . . 4 ⊢ (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
| 27 | 26 | ralbii 3075 | . . 3 ⊢ (∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
| 28 | 18, 27 | bitrdi 287 | . 2 ⊢ (𝜑 → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
| 29 | 4, 6, 28 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 ∃wrex 3053 Vcvv 3436 class class class wbr 5092 ↦ cmpt 5173 ⟶wf 6478 ‘cfv 6482 ℝcr 11008 +∞cpnf 11146 -∞cmnf 11147 ℝ*cxr 11148 ≤ cle 11150 ℤcz 12471 ℤ≥cuz 12735 -𝑒cxne 13011 ~~>*clsxlim 45809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-1o 8388 df-2o 8389 df-er 8625 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-z 12472 df-uz 12736 df-xneg 13014 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-topgen 17347 df-ordt 17405 df-ps 18472 df-tsr 18473 df-top 22779 df-topon 22796 df-bases 22831 df-lm 23114 df-xlim 45810 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |