Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfxnegmnf2 Structured version   Visualization version   GIF version

Theorem xlimpnfxnegmnf2 45955
Description: A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimpnfxnegmnf2.j 𝑗𝐹
xlimpnfxnegmnf2.m (𝜑𝑀 ∈ ℤ)
xlimpnfxnegmnf2.z 𝑍 = (ℤ𝑀)
xlimpnfxnegmnf2.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfxnegmnf2 (𝜑 → (𝐹~~>*+∞ ↔ (𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞))
Distinct variable group:   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)   𝑀(𝑗)

Proof of Theorem xlimpnfxnegmnf2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimpnfxnegmnf2.j . . 3 𝑗𝐹
2 xlimpnfxnegmnf2.z . . 3 𝑍 = (ℤ𝑀)
3 xlimpnfxnegmnf2.f . . 3 (𝜑𝐹:𝑍⟶ℝ*)
41, 2, 3xlimpnfxnegmnf 45911 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
5 xlimpnfxnegmnf2.m . . 3 (𝜑𝑀 ∈ ℤ)
61, 5, 2, 3xlimpnf 45939 . 2 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
7 nfmpt1 5188 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
83ffvelcdmda 7017 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
98xnegcld 13199 . . . . 5 ((𝜑𝑘𝑍) → -𝑒(𝐹𝑘) ∈ ℝ*)
10 nfcv 2894 . . . . . 6 𝑘-𝑒(𝐹𝑗)
11 nfcv 2894 . . . . . . . 8 𝑗𝑘
121, 11nffv 6832 . . . . . . 7 𝑗(𝐹𝑘)
1312nfxneg 45558 . . . . . 6 𝑗-𝑒(𝐹𝑘)
14 fveq2 6822 . . . . . . 7 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
1514xnegeqd 45534 . . . . . 6 (𝑗 = 𝑘 → -𝑒(𝐹𝑗) = -𝑒(𝐹𝑘))
1610, 13, 15cbvmpt 5191 . . . . 5 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑘𝑍 ↦ -𝑒(𝐹𝑘))
179, 16fmptd 7047 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
187, 5, 2, 17xlimmnf 45938 . . 3 (𝜑 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥))
192uztrn2 12751 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
20 xnegex 13107 . . . . . . . . 9 -𝑒(𝐹𝑗) ∈ V
21 fvmpt4 45334 . . . . . . . . 9 ((𝑗𝑍 ∧ -𝑒(𝐹𝑗) ∈ V) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
2220, 21mpan2 691 . . . . . . . 8 (𝑗𝑍 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
2322breq1d 5099 . . . . . . 7 (𝑗𝑍 → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
2419, 23syl 17 . . . . . 6 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
2524ralbidva 3153 . . . . 5 (𝑘𝑍 → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
2625rexbiia 3077 . . . 4 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
2726ralbii 3078 . . 3 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
2818, 27bitrdi 287 . 2 (𝜑 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
294, 6, 283bitr4d 311 1 (𝜑 → (𝐹~~>*+∞ ↔ (𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wnfc 2879  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  cr 11005  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145  cle 11147  cz 12468  cuz 12732  -𝑒cxne 13008  ~~>*clsxlim 45915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-z 12469  df-uz 12733  df-xneg 13011  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-topgen 17347  df-ordt 17405  df-ps 18472  df-tsr 18473  df-top 22809  df-topon 22826  df-bases 22861  df-lm 23144  df-xlim 45916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator