Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfxnegmnf2 Structured version   Visualization version   GIF version

Theorem xlimpnfxnegmnf2 45887
Description: A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimpnfxnegmnf2.j 𝑗𝐹
xlimpnfxnegmnf2.m (𝜑𝑀 ∈ ℤ)
xlimpnfxnegmnf2.z 𝑍 = (ℤ𝑀)
xlimpnfxnegmnf2.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfxnegmnf2 (𝜑 → (𝐹~~>*+∞ ↔ (𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞))
Distinct variable group:   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)   𝑀(𝑗)

Proof of Theorem xlimpnfxnegmnf2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimpnfxnegmnf2.j . . 3 𝑗𝐹
2 xlimpnfxnegmnf2.z . . 3 𝑍 = (ℤ𝑀)
3 xlimpnfxnegmnf2.f . . 3 (𝜑𝐹:𝑍⟶ℝ*)
41, 2, 3xlimpnfxnegmnf 45843 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
5 xlimpnfxnegmnf2.m . . 3 (𝜑𝑀 ∈ ℤ)
61, 5, 2, 3xlimpnf 45871 . 2 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
7 nfmpt1 5220 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
83ffvelcdmda 7074 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
98xnegcld 13316 . . . . 5 ((𝜑𝑘𝑍) → -𝑒(𝐹𝑘) ∈ ℝ*)
10 nfcv 2898 . . . . . 6 𝑘-𝑒(𝐹𝑗)
11 nfcv 2898 . . . . . . . 8 𝑗𝑘
121, 11nffv 6886 . . . . . . 7 𝑗(𝐹𝑘)
1312nfxneg 45488 . . . . . 6 𝑗-𝑒(𝐹𝑘)
14 fveq2 6876 . . . . . . 7 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
1514xnegeqd 45464 . . . . . 6 (𝑗 = 𝑘 → -𝑒(𝐹𝑗) = -𝑒(𝐹𝑘))
1610, 13, 15cbvmpt 5223 . . . . 5 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑘𝑍 ↦ -𝑒(𝐹𝑘))
179, 16fmptd 7104 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
187, 5, 2, 17xlimmnf 45870 . . 3 (𝜑 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥))
192uztrn2 12871 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
20 xnegex 13224 . . . . . . . . 9 -𝑒(𝐹𝑗) ∈ V
21 fvmpt4 45262 . . . . . . . . 9 ((𝑗𝑍 ∧ -𝑒(𝐹𝑗) ∈ V) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
2220, 21mpan2 691 . . . . . . . 8 (𝑗𝑍 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
2322breq1d 5129 . . . . . . 7 (𝑗𝑍 → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
2419, 23syl 17 . . . . . 6 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
2524ralbidva 3161 . . . . 5 (𝑘𝑍 → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
2625rexbiia 3081 . . . 4 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
2726ralbii 3082 . . 3 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
2818, 27bitrdi 287 . 2 (𝜑 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
294, 6, 283bitr4d 311 1 (𝜑 → (𝐹~~>*+∞ ↔ (𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wnfc 2883  wral 3051  wrex 3060  Vcvv 3459   class class class wbr 5119  cmpt 5201  wf 6527  cfv 6531  cr 11128  +∞cpnf 11266  -∞cmnf 11267  *cxr 11268  cle 11270  cz 12588  cuz 12852  -𝑒cxne 13125  ~~>*clsxlim 45847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-z 12589  df-uz 12853  df-xneg 13128  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-topgen 17457  df-ordt 17515  df-ps 18576  df-tsr 18577  df-top 22832  df-topon 22849  df-bases 22884  df-lm 23167  df-xlim 45848
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator