Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfxnegmnf2 Structured version   Visualization version   GIF version

Theorem xlimpnfxnegmnf2 42439
 Description: A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimpnfxnegmnf2.j 𝑗𝐹
xlimpnfxnegmnf2.m (𝜑𝑀 ∈ ℤ)
xlimpnfxnegmnf2.z 𝑍 = (ℤ𝑀)
xlimpnfxnegmnf2.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfxnegmnf2 (𝜑 → (𝐹~~>*+∞ ↔ (𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞))
Distinct variable group:   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)   𝑀(𝑗)

Proof of Theorem xlimpnfxnegmnf2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimpnfxnegmnf2.j . . 3 𝑗𝐹
2 xlimpnfxnegmnf2.z . . 3 𝑍 = (ℤ𝑀)
3 xlimpnfxnegmnf2.f . . 3 (𝜑𝐹:𝑍⟶ℝ*)
41, 2, 3xlimpnfxnegmnf 42395 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
5 xlimpnfxnegmnf2.m . . 3 (𝜑𝑀 ∈ ℤ)
61, 5, 2, 3xlimpnf 42423 . 2 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
7 nfmpt1 5140 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
83ffvelrnda 6833 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
98xnegcld 12681 . . . . 5 ((𝜑𝑘𝑍) → -𝑒(𝐹𝑘) ∈ ℝ*)
10 nfcv 2979 . . . . . 6 𝑘-𝑒(𝐹𝑗)
11 nfcv 2979 . . . . . . . 8 𝑗𝑘
121, 11nffv 6662 . . . . . . 7 𝑗(𝐹𝑘)
1312nfxneg 42039 . . . . . 6 𝑗-𝑒(𝐹𝑘)
14 fveq2 6652 . . . . . . 7 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
1514xnegeqd 42013 . . . . . 6 (𝑗 = 𝑘 → -𝑒(𝐹𝑗) = -𝑒(𝐹𝑘))
1610, 13, 15cbvmpt 5143 . . . . 5 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑘𝑍 ↦ -𝑒(𝐹𝑘))
179, 16fmptd 6860 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
187, 5, 2, 17xlimmnf 42422 . . 3 (𝜑 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥))
192uztrn2 12250 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
20 xnegex 12589 . . . . . . . . 9 -𝑒(𝐹𝑗) ∈ V
21 fvmpt4 41812 . . . . . . . . 9 ((𝑗𝑍 ∧ -𝑒(𝐹𝑗) ∈ V) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
2220, 21mpan2 690 . . . . . . . 8 (𝑗𝑍 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
2322breq1d 5052 . . . . . . 7 (𝑗𝑍 → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
2419, 23syl 17 . . . . . 6 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
2524ralbidva 3186 . . . . 5 (𝑘𝑍 → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
2625rexbiia 3234 . . . 4 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
2726ralbii 3157 . . 3 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
2818, 27syl6bb 290 . 2 (𝜑 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
294, 6, 283bitr4d 314 1 (𝜑 → (𝐹~~>*+∞ ↔ (𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2114  Ⅎwnfc 2960  ∀wral 3130  ∃wrex 3131  Vcvv 3469   class class class wbr 5042   ↦ cmpt 5122  ⟶wf 6330  ‘cfv 6334  ℝcr 10525  +∞cpnf 10661  -∞cmnf 10662  ℝ*cxr 10663   ≤ cle 10665  ℤcz 11969  ℤ≥cuz 12231  -𝑒cxne 12492  ~~>*clsxlim 42399 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-z 11970  df-uz 12232  df-xneg 12495  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-topgen 16708  df-ordt 16765  df-ps 17801  df-tsr 17802  df-top 21497  df-topon 21514  df-bases 21549  df-lm 21832  df-xlim 42400 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator