Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfxnegmnf2 Structured version   Visualization version   GIF version

Theorem xlimpnfxnegmnf2 43890
Description: A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimpnfxnegmnf2.j 𝑗𝐹
xlimpnfxnegmnf2.m (𝜑𝑀 ∈ ℤ)
xlimpnfxnegmnf2.z 𝑍 = (ℤ𝑀)
xlimpnfxnegmnf2.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfxnegmnf2 (𝜑 → (𝐹~~>*+∞ ↔ (𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞))
Distinct variable group:   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)   𝑀(𝑗)

Proof of Theorem xlimpnfxnegmnf2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimpnfxnegmnf2.j . . 3 𝑗𝐹
2 xlimpnfxnegmnf2.z . . 3 𝑍 = (ℤ𝑀)
3 xlimpnfxnegmnf2.f . . 3 (𝜑𝐹:𝑍⟶ℝ*)
41, 2, 3xlimpnfxnegmnf 43846 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
5 xlimpnfxnegmnf2.m . . 3 (𝜑𝑀 ∈ ℤ)
61, 5, 2, 3xlimpnf 43874 . 2 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
7 nfmpt1 5212 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
83ffvelcdmda 7030 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
98xnegcld 13149 . . . . 5 ((𝜑𝑘𝑍) → -𝑒(𝐹𝑘) ∈ ℝ*)
10 nfcv 2906 . . . . . 6 𝑘-𝑒(𝐹𝑗)
11 nfcv 2906 . . . . . . . 8 𝑗𝑘
121, 11nffv 6848 . . . . . . 7 𝑗(𝐹𝑘)
1312nfxneg 43491 . . . . . 6 𝑗-𝑒(𝐹𝑘)
14 fveq2 6838 . . . . . . 7 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
1514xnegeqd 43467 . . . . . 6 (𝑗 = 𝑘 → -𝑒(𝐹𝑗) = -𝑒(𝐹𝑘))
1610, 13, 15cbvmpt 5215 . . . . 5 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑘𝑍 ↦ -𝑒(𝐹𝑘))
179, 16fmptd 7057 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
187, 5, 2, 17xlimmnf 43873 . . 3 (𝜑 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥))
192uztrn2 12716 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
20 xnegex 13057 . . . . . . . . 9 -𝑒(𝐹𝑗) ∈ V
21 fvmpt4 43259 . . . . . . . . 9 ((𝑗𝑍 ∧ -𝑒(𝐹𝑗) ∈ V) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
2220, 21mpan2 690 . . . . . . . 8 (𝑗𝑍 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
2322breq1d 5114 . . . . . . 7 (𝑗𝑍 → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
2419, 23syl 17 . . . . . 6 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
2524ralbidva 3171 . . . . 5 (𝑘𝑍 → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
2625rexbiia 3094 . . . 4 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
2726ralbii 3095 . . 3 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
2818, 27bitrdi 287 . 2 (𝜑 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
294, 6, 283bitr4d 311 1 (𝜑 → (𝐹~~>*+∞ ↔ (𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wnfc 2886  wral 3063  wrex 3072  Vcvv 3444   class class class wbr 5104  cmpt 5187  wf 6488  cfv 6492  cr 10984  +∞cpnf 11120  -∞cmnf 11121  *cxr 11122  cle 11124  cz 12433  cuz 12697  -𝑒cxne 12960  ~~>*clsxlim 43850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-1st 7912  df-2nd 7913  df-1o 8380  df-er 8582  df-pm 8702  df-en 8818  df-dom 8819  df-sdom 8820  df-fin 8821  df-fi 9281  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-z 12434  df-uz 12698  df-xneg 12963  df-ioo 13198  df-ioc 13199  df-ico 13200  df-icc 13201  df-topgen 17261  df-ordt 17319  df-ps 18391  df-tsr 18392  df-top 22171  df-topon 22188  df-bases 22224  df-lm 22508  df-xlim 43851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator