![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimpnfxnegmnf2 | Structured version Visualization version GIF version |
Description: A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
Ref | Expression |
---|---|
xlimpnfxnegmnf2.j | ⊢ Ⅎ𝑗𝐹 |
xlimpnfxnegmnf2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
xlimpnfxnegmnf2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimpnfxnegmnf2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
Ref | Expression |
---|---|
xlimpnfxnegmnf2 | ⊢ (𝜑 → (𝐹~~>*+∞ ↔ (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimpnfxnegmnf2.j | . . 3 ⊢ Ⅎ𝑗𝐹 | |
2 | xlimpnfxnegmnf2.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | xlimpnfxnegmnf2.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
4 | 1, 2, 3 | xlimpnfxnegmnf 45770 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
5 | xlimpnfxnegmnf2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | 1, 5, 2, 3 | xlimpnf 45798 | . 2 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗))) |
7 | nfmpt1 5256 | . . . 4 ⊢ Ⅎ𝑗(𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)) | |
8 | 3 | ffvelcdmda 7104 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ*) |
9 | 8 | xnegcld 13339 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝑒(𝐹‘𝑘) ∈ ℝ*) |
10 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑘-𝑒(𝐹‘𝑗) | |
11 | nfcv 2903 | . . . . . . . 8 ⊢ Ⅎ𝑗𝑘 | |
12 | 1, 11 | nffv 6917 | . . . . . . 7 ⊢ Ⅎ𝑗(𝐹‘𝑘) |
13 | 12 | nfxneg 45411 | . . . . . 6 ⊢ Ⅎ𝑗-𝑒(𝐹‘𝑘) |
14 | fveq2 6907 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
15 | 14 | xnegeqd 45387 | . . . . . 6 ⊢ (𝑗 = 𝑘 → -𝑒(𝐹‘𝑗) = -𝑒(𝐹‘𝑘)) |
16 | 10, 13, 15 | cbvmpt 5259 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)) = (𝑘 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑘)) |
17 | 9, 16 | fmptd 7134 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)):𝑍⟶ℝ*) |
18 | 7, 5, 2, 17 | xlimmnf 45797 | . . 3 ⊢ (𝜑 → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥)) |
19 | 2 | uztrn2 12895 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ 𝑍) |
20 | xnegex 13247 | . . . . . . . . 9 ⊢ -𝑒(𝐹‘𝑗) ∈ V | |
21 | fvmpt4 45182 | . . . . . . . . 9 ⊢ ((𝑗 ∈ 𝑍 ∧ -𝑒(𝐹‘𝑗) ∈ V) → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) = -𝑒(𝐹‘𝑗)) | |
22 | 20, 21 | mpan2 691 | . . . . . . . 8 ⊢ (𝑗 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) = -𝑒(𝐹‘𝑗)) |
23 | 22 | breq1d 5158 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹‘𝑗) ≤ 𝑥)) |
24 | 19, 23 | syl 17 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹‘𝑗) ≤ 𝑥)) |
25 | 24 | ralbidva 3174 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → (∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
26 | 25 | rexbiia 3090 | . . . 4 ⊢ (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
27 | 26 | ralbii 3091 | . . 3 ⊢ (∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
28 | 18, 27 | bitrdi 287 | . 2 ⊢ (𝜑 → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
29 | 4, 6, 28 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Ⅎwnfc 2888 ∀wral 3059 ∃wrex 3068 Vcvv 3478 class class class wbr 5148 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 ℝcr 11152 +∞cpnf 11290 -∞cmnf 11291 ℝ*cxr 11292 ≤ cle 11294 ℤcz 12611 ℤ≥cuz 12876 -𝑒cxne 13149 ~~>*clsxlim 45774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-1o 8505 df-2o 8506 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-z 12612 df-uz 12877 df-xneg 13152 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-topgen 17490 df-ordt 17548 df-ps 18624 df-tsr 18625 df-top 22916 df-topon 22933 df-bases 22969 df-lm 23253 df-xlim 45775 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |