Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfxnegmnf2 Structured version   Visualization version   GIF version

Theorem xlimpnfxnegmnf2 45513
Description: A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimpnfxnegmnf2.j 𝑗𝐹
xlimpnfxnegmnf2.m (𝜑𝑀 ∈ ℤ)
xlimpnfxnegmnf2.z 𝑍 = (ℤ𝑀)
xlimpnfxnegmnf2.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfxnegmnf2 (𝜑 → (𝐹~~>*+∞ ↔ (𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞))
Distinct variable group:   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)   𝑀(𝑗)

Proof of Theorem xlimpnfxnegmnf2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimpnfxnegmnf2.j . . 3 𝑗𝐹
2 xlimpnfxnegmnf2.z . . 3 𝑍 = (ℤ𝑀)
3 xlimpnfxnegmnf2.f . . 3 (𝜑𝐹:𝑍⟶ℝ*)
41, 2, 3xlimpnfxnegmnf 45469 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
5 xlimpnfxnegmnf2.m . . 3 (𝜑𝑀 ∈ ℤ)
61, 5, 2, 3xlimpnf 45497 . 2 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
7 nfmpt1 5252 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
83ffvelcdmda 7088 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
98xnegcld 13325 . . . . 5 ((𝜑𝑘𝑍) → -𝑒(𝐹𝑘) ∈ ℝ*)
10 nfcv 2892 . . . . . 6 𝑘-𝑒(𝐹𝑗)
11 nfcv 2892 . . . . . . . 8 𝑗𝑘
121, 11nffv 6901 . . . . . . 7 𝑗(𝐹𝑘)
1312nfxneg 45110 . . . . . 6 𝑗-𝑒(𝐹𝑘)
14 fveq2 6891 . . . . . . 7 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
1514xnegeqd 45086 . . . . . 6 (𝑗 = 𝑘 → -𝑒(𝐹𝑗) = -𝑒(𝐹𝑘))
1610, 13, 15cbvmpt 5255 . . . . 5 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑘𝑍 ↦ -𝑒(𝐹𝑘))
179, 16fmptd 7118 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
187, 5, 2, 17xlimmnf 45496 . . 3 (𝜑 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥))
192uztrn2 12885 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
20 xnegex 13233 . . . . . . . . 9 -𝑒(𝐹𝑗) ∈ V
21 fvmpt4 44880 . . . . . . . . 9 ((𝑗𝑍 ∧ -𝑒(𝐹𝑗) ∈ V) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
2220, 21mpan2 689 . . . . . . . 8 (𝑗𝑍 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
2322breq1d 5154 . . . . . . 7 (𝑗𝑍 → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
2419, 23syl 17 . . . . . 6 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
2524ralbidva 3166 . . . . 5 (𝑘𝑍 → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
2625rexbiia 3082 . . . 4 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
2726ralbii 3083 . . 3 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
2818, 27bitrdi 286 . 2 (𝜑 → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
294, 6, 283bitr4d 310 1 (𝜑 → (𝐹~~>*+∞ ↔ (𝑗𝑍 ↦ -𝑒(𝐹𝑗))~~>*-∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wnfc 2876  wral 3051  wrex 3060  Vcvv 3463   class class class wbr 5144  cmpt 5227  wf 6540  cfv 6544  cr 11146  +∞cpnf 11284  -∞cmnf 11285  *cxr 11286  cle 11288  cz 12602  cuz 12866  -𝑒cxne 13135  ~~>*clsxlim 45473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7993  df-2nd 7994  df-1o 8486  df-2o 8487  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9445  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-z 12603  df-uz 12867  df-xneg 13138  df-ioo 13374  df-ioc 13375  df-ico 13376  df-icc 13377  df-topgen 17451  df-ordt 17509  df-ps 18584  df-tsr 18585  df-top 22882  df-topon 22899  df-bases 22935  df-lm 23219  df-xlim 45474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator