![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimpnfxnegmnf2 | Structured version Visualization version GIF version |
Description: A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
Ref | Expression |
---|---|
xlimpnfxnegmnf2.j | ⊢ Ⅎ𝑗𝐹 |
xlimpnfxnegmnf2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
xlimpnfxnegmnf2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimpnfxnegmnf2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
Ref | Expression |
---|---|
xlimpnfxnegmnf2 | ⊢ (𝜑 → (𝐹~~>*+∞ ↔ (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimpnfxnegmnf2.j | . . 3 ⊢ Ⅎ𝑗𝐹 | |
2 | xlimpnfxnegmnf2.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | xlimpnfxnegmnf2.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
4 | 1, 2, 3 | xlimpnfxnegmnf 45469 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
5 | xlimpnfxnegmnf2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | 1, 5, 2, 3 | xlimpnf 45497 | . 2 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗))) |
7 | nfmpt1 5252 | . . . 4 ⊢ Ⅎ𝑗(𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)) | |
8 | 3 | ffvelcdmda 7088 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ*) |
9 | 8 | xnegcld 13325 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝑒(𝐹‘𝑘) ∈ ℝ*) |
10 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑘-𝑒(𝐹‘𝑗) | |
11 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑗𝑘 | |
12 | 1, 11 | nffv 6901 | . . . . . . 7 ⊢ Ⅎ𝑗(𝐹‘𝑘) |
13 | 12 | nfxneg 45110 | . . . . . 6 ⊢ Ⅎ𝑗-𝑒(𝐹‘𝑘) |
14 | fveq2 6891 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
15 | 14 | xnegeqd 45086 | . . . . . 6 ⊢ (𝑗 = 𝑘 → -𝑒(𝐹‘𝑗) = -𝑒(𝐹‘𝑘)) |
16 | 10, 13, 15 | cbvmpt 5255 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)) = (𝑘 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑘)) |
17 | 9, 16 | fmptd 7118 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)):𝑍⟶ℝ*) |
18 | 7, 5, 2, 17 | xlimmnf 45496 | . . 3 ⊢ (𝜑 → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥)) |
19 | 2 | uztrn2 12885 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ 𝑍) |
20 | xnegex 13233 | . . . . . . . . 9 ⊢ -𝑒(𝐹‘𝑗) ∈ V | |
21 | fvmpt4 44880 | . . . . . . . . 9 ⊢ ((𝑗 ∈ 𝑍 ∧ -𝑒(𝐹‘𝑗) ∈ V) → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) = -𝑒(𝐹‘𝑗)) | |
22 | 20, 21 | mpan2 689 | . . . . . . . 8 ⊢ (𝑗 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) = -𝑒(𝐹‘𝑗)) |
23 | 22 | breq1d 5154 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹‘𝑗) ≤ 𝑥)) |
24 | 19, 23 | syl 17 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹‘𝑗) ≤ 𝑥)) |
25 | 24 | ralbidva 3166 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → (∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
26 | 25 | rexbiia 3082 | . . . 4 ⊢ (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
27 | 26 | ralbii 3083 | . . 3 ⊢ (∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
28 | 18, 27 | bitrdi 286 | . 2 ⊢ (𝜑 → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
29 | 4, 6, 28 | 3bitr4d 310 | 1 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Ⅎwnfc 2876 ∀wral 3051 ∃wrex 3060 Vcvv 3463 class class class wbr 5144 ↦ cmpt 5227 ⟶wf 6540 ‘cfv 6544 ℝcr 11146 +∞cpnf 11284 -∞cmnf 11285 ℝ*cxr 11286 ≤ cle 11288 ℤcz 12602 ℤ≥cuz 12866 -𝑒cxne 13135 ~~>*clsxlim 45473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-1o 8486 df-2o 8487 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9445 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-z 12603 df-uz 12867 df-xneg 13138 df-ioo 13374 df-ioc 13375 df-ico 13376 df-icc 13377 df-topgen 17451 df-ordt 17509 df-ps 18584 df-tsr 18585 df-top 22882 df-topon 22899 df-bases 22935 df-lm 23219 df-xlim 45474 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |