![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1ellim | Structured version Visualization version GIF version |
Description: A limit ordinal contains 1. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
1ellim | ⊢ (Lim 𝐴 → 1o ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlim0 6423 | . . . 4 ⊢ ¬ Lim ∅ | |
2 | limeq 6376 | . . . 4 ⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅)) | |
3 | 1, 2 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ Lim 𝐴) |
4 | 3 | necon2ai 2966 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ ∅) |
5 | nlim1 8504 | . . . 4 ⊢ ¬ Lim 1o | |
6 | limeq 6376 | . . . 4 ⊢ (𝐴 = 1o → (Lim 𝐴 ↔ Lim 1o)) | |
7 | 5, 6 | mtbiri 327 | . . 3 ⊢ (𝐴 = 1o → ¬ Lim 𝐴) |
8 | 7 | necon2ai 2966 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ 1o) |
9 | limord 6424 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
10 | ord1eln01 8511 | . . 3 ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (Lim 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) |
12 | 4, 8, 11 | mpbir2and 712 | 1 ⊢ (Lim 𝐴 → 1o ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∅c0 4319 Ord word 6363 Lim wlim 6365 1oc1o 8474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-tr 5261 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-1o 8481 |
This theorem is referenced by: 1onn 8655 |
Copyright terms: Public domain | W3C validator |