MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1ellim Structured version   Visualization version   GIF version

Theorem 1ellim 8515
Description: A limit ordinal contains 1. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
1ellim (Lim 𝐴 → 1o𝐴)

Proof of Theorem 1ellim
StepHypRef Expression
1 nlim0 6417 . . . 4 ¬ Lim ∅
2 limeq 6369 . . . 4 (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅))
31, 2mtbiri 327 . . 3 (𝐴 = ∅ → ¬ Lim 𝐴)
43necon2ai 2962 . 2 (Lim 𝐴𝐴 ≠ ∅)
5 nlim1 8506 . . . 4 ¬ Lim 1o
6 limeq 6369 . . . 4 (𝐴 = 1o → (Lim 𝐴 ↔ Lim 1o))
75, 6mtbiri 327 . . 3 (𝐴 = 1o → ¬ Lim 𝐴)
87necon2ai 2962 . 2 (Lim 𝐴𝐴 ≠ 1o)
9 limord 6418 . . 3 (Lim 𝐴 → Ord 𝐴)
10 ord1eln01 8513 . . 3 (Ord 𝐴 → (1o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o)))
119, 10syl 17 . 2 (Lim 𝐴 → (1o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o)))
124, 8, 11mpbir2and 713 1 (Lim 𝐴 → 1o𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  c0 4313  Ord word 6356  Lim wlim 6358  1oc1o 8478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-1o 8485
This theorem is referenced by:  1onn  8657
  Copyright terms: Public domain W3C validator