MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1ellim Structured version   Visualization version   GIF version

Theorem 1ellim 8535
Description: A limit ordinal contains 1. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
1ellim (Lim 𝐴 → 1o𝐴)

Proof of Theorem 1ellim
StepHypRef Expression
1 nlim0 6445 . . . 4 ¬ Lim ∅
2 limeq 6398 . . . 4 (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅))
31, 2mtbiri 327 . . 3 (𝐴 = ∅ → ¬ Lim 𝐴)
43necon2ai 2968 . 2 (Lim 𝐴𝐴 ≠ ∅)
5 nlim1 8526 . . . 4 ¬ Lim 1o
6 limeq 6398 . . . 4 (𝐴 = 1o → (Lim 𝐴 ↔ Lim 1o))
75, 6mtbiri 327 . . 3 (𝐴 = 1o → ¬ Lim 𝐴)
87necon2ai 2968 . 2 (Lim 𝐴𝐴 ≠ 1o)
9 limord 6446 . . 3 (Lim 𝐴 → Ord 𝐴)
10 ord1eln01 8533 . . 3 (Ord 𝐴 → (1o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o)))
119, 10syl 17 . 2 (Lim 𝐴 → (1o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o)))
124, 8, 11mpbir2and 713 1 (Lim 𝐴 → 1o𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  c0 4339  Ord word 6385  Lim wlim 6387  1oc1o 8498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-1o 8505
This theorem is referenced by:  1onn  8677
  Copyright terms: Public domain W3C validator