| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1ellim | Structured version Visualization version GIF version | ||
| Description: A limit ordinal contains 1. (Contributed by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 1ellim | ⊢ (Lim 𝐴 → 1o ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlim0 6417 | . . . 4 ⊢ ¬ Lim ∅ | |
| 2 | limeq 6369 | . . . 4 ⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅)) | |
| 3 | 1, 2 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ Lim 𝐴) |
| 4 | 3 | necon2ai 2962 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ ∅) |
| 5 | nlim1 8506 | . . . 4 ⊢ ¬ Lim 1o | |
| 6 | limeq 6369 | . . . 4 ⊢ (𝐴 = 1o → (Lim 𝐴 ↔ Lim 1o)) | |
| 7 | 5, 6 | mtbiri 327 | . . 3 ⊢ (𝐴 = 1o → ¬ Lim 𝐴) |
| 8 | 7 | necon2ai 2962 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ 1o) |
| 9 | limord 6418 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 10 | ord1eln01 8513 | . . 3 ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (Lim 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) |
| 12 | 4, 8, 11 | mpbir2and 713 | 1 ⊢ (Lim 𝐴 → 1o ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 Ord word 6356 Lim wlim 6358 1oc1o 8478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-1o 8485 |
| This theorem is referenced by: 1onn 8657 |
| Copyright terms: Public domain | W3C validator |